"""Solution objects for beam propagations."""
import logging
import typing
from functools import partial
import numpy as np
from ..components import Cavity, Space
from ..components.general import Connector
from ..components.node import OpticalNode, Port
from ..env import is_interactive, warn
from ..exceptions import FinesseException
from ..gaussian import BeamParam
from ..solutions.base import BaseSolution
from ..symbols import Symbol, evaluate
from ..utilities.misc import is_iterable, pairwise
from ..utilities.tables import NumberTable
from ..utilities.text import scale_si
LOGGER = logging.getLogger(__name__)
[docs]class ABCDSolution(BaseSolution):
"""Solution for a composite ABCD calculation.
Parameters
----------
M : array-like or two-element tuple of array-like
The ABCD matrix / matrices.
direction : str
Direction / plane of computation.
``"both"`` indicates that `M` is a tuple of the ABCD matrices
computed over both the tangential and sagittal planes.
``"x"`` implies M is the ABCD matrix computed over the tangential plane.
``"y"`` implies M is the ABCD matrix computed over the sagittal plane.
symbolic : bool
Flag indicating whether the calculations are symbolic.
"""
[docs] def __init__(self, name, M, direction, symbolic):
super().__init__(name)
self.empty = False # tree drawing fill circle
self._M = M
self.__direction = direction
self.__symbolic = symbolic
def __str__(self):
return str(self._M)
@property
def direction(self):
"""The plane in which this ABCD matrix was computed - 'x'
for tangential, 'y' for sagittal.
:`getter`: Returns the ABCD matrix plane.
"""
return self.__direction
@property
def symbolic(self):
"""Indicates whether this ABCD solution is symbolic.
:`getter`: Returns `True` if this stores symbolic expressions, `False` otherwise.
"""
return self.__symbolic
@property
def M(self):
"""A copy of the underlying ABCD matrix as a :class:`numpy.ndarray`.
:`getter`: Returns a copy of underlying ABCD matrix.
"""
return self._M.copy()
[docs] def eval(self):
"""Evaluate the symbolic ABCD matrix.
Computes the numeric form of the ABCD matrix using
the ``eval`` method of each parameter reference.
Returns
-------
out : :class:`numpy.ndarray`
A numeric matrix for the evaluated ABCD.
"""
if not self.symbolic:
return self.M
return evaluate(self.M)
[docs]class PropagationSolution(BaseSolution):
"""Solution representation of a call to
:func:`~finesse.tracing.tools.propagate_beam`.
This class contains useful attributes and methods for accessing properties of the
beam that was propagated through the path specified by the above function call. If
this propagation call was symbolic then each property returned from this class will
also be symbolic - evaluate these using the ``eval`` method of the symbolic
expression.
Note that PropagationSolution objects are returned via
:func:`~finesse.tracing.tools.propagate_beam` (or :meth:`.Model.propagate_beam`),
they should never need to be created manually.
See :ref:`propagating_beams` for details and examples on using this class.
"""
[docs] def __init__(self, name, node_info, comp_info, symbolic):
super().__init__(name)
self.node_info = node_info
self.comp_info = comp_info
self.__symbolic = symbolic
self.total_acc_gouy = 0
for info in comp_info.values():
self.total_acc_gouy += info.get("acc_gouy", 0)
self.empty = False
# NOTE (sjr) For non-symbolic propagations, we need to store the fixed
# space length as it was at the time of the propagate_beam
# call to avoid any issues (when plotting the solution) if a
# space length is changed in the model afterwards
if not self.symbolic:
self.__frozen_space_lengths = {
space: evaluate(space.L.value) for space in self.spaces
}
else:
self.__frozen_space_lengths = {}
def __get_model(self):
nodes = list(self.node_info.keys())
if not nodes:
return None
return nodes[0]._model
def __get_component(self, x):
if isinstance(x, str):
name = x
model = self.__get_model()
if model is None:
raise RuntimeError("Empty PropagationSolution - no path traversed!")
x = model.elements.get(name)
if x is None:
raise ValueError(f"No component of name {name} exists in the model")
if not isinstance(x, Connector):
raise TypeError(
"Invalid type for component. Expected Connector " f"but got {type(x)}"
)
if x not in self.comp_info:
raise ValueError(
f"No component of name {x.name} exists in the propagated path"
)
return x
def __get_node(self, x: str):
if len(x.split(".")) != 3:
raise ValueError(f"Unexpected node name format: {x}")
model = self.__get_model()
if model is None:
raise RuntimeError("Empty PropagationSolution - no path traversed!")
if not model.network.has_node(x):
raise ValueError(f"No node of name {x} exists in the model.")
return model.network.nodes[x]["weakref"]()
@property
def symbolic(self):
"""Whether the propagation solution is symbolic."""
return self.__symbolic
@property
def start_node(self):
"""The starting node of the propagation."""
nodes = list(self.node_info.keys())
if not nodes:
return None
return nodes[0]
@property
def end_node(self):
"""The final node of the propagation."""
nodes = list(self.node_info.keys())
if not nodes:
return None
return nodes[-1]
@property
def nodes(self):
"""A list of all the nodes traversed, in order."""
return list(self.node_info.keys())
@property
def ports(self):
"""A list of all the ports traversed, in order."""
return list(dict.fromkeys(node.port for node in self.nodes))
@property
def spaces(self):
"""A list of all spaces traversed, in order."""
space_entries = dict(
filter(lambda x: "acc_gouy" in x[1], self.comp_info.items())
)
return list(space_entries.keys())
@property
def components(self):
"""A list of all components (excluding spaces) traversed, in order."""
return list(filter(lambda x: not isinstance(x, Space), self.comp_info.keys()))
@property
def positions(self):
"""A dictionary of the :class:`.Connector` instances to their positions
(relative to the start node)."""
pos = {}
for node, info in self.node_info.items():
if node.component in pos:
continue
pos[node.component] = info["z"]
return pos
@property
def path_length(self):
"""The geometric path length of the traversed path.
Equal to the sum of each space length in the path.
"""
nodes = list(self.node_info.keys())
if not nodes:
return 0
return self.node_info[nodes[-1]]["z"]
@property
def optical_path_length(self):
"""The optical path length of the traversed path.
Equal to the sum of the product of each space length and refractive index in the
path.
"""
nodes = self.nodes
if not nodes:
return 0
return self.node_info[nodes[-1]]["z_optical"]
@property
def beamsizes(self):
"""Dictionary of node to beam size mappings."""
return {node: info["q"].w for node, info in self.node_info.items()}
@property
def ws(self):
"""Identical to :attr:`PropagationSolution.beamsizes`"""
return self.beamsizes
@property
def waistpositions(self):
"""Dictionary of node to waist position (as measured from node) mappings."""
return {node: info["q"].z for node, info in self.node_info.items()}
@property
def z0s(self):
"""Identical to :attr:`PropagationSolution.waistpositions`"""
return self.waistpositions
@property
def qs(self):
"""Dictionary of node to beam parameter mappings."""
return {node: info["q"] for node, info in self.node_info.items()}
@property
def full_ABCD(self):
"""The full, composite ABCD matrix from the start to the end of the path."""
last_node_info = list(self.node_info.values())[-1]
return last_node_info["ABCD"]
[docs] def acc_gouy(self, *args):
"""Accumulated Gouy phase over a sequence of spaces.
Parameters
----------
args : sequence of args
Space components or names of spaces.
Returns
-------
agouy : float or :class:`.Function`
The accumulated Gouy phase over the given spaces.
"""
agouy = 0
model = self.__get_model()
if model is None:
return agouy
for space in args:
if isinstance(space, str):
space = model.elements.get(space)
agouy += self.comp_info[space]["acc_gouy"]
return agouy
[docs] def acc_gouy_up_to(self, point):
"""Accumulated Gouy phase up to a `point` in the traversed path.
This computes the cumulative Gouy phase from the
:attr:`.PropagationSolution.start_node` to the specified `point`.
Parameters
----------
point : :class:`.OpticalNode` or :class:`.Port` or :class:`.Connector` or str
A node, port, component or name of component up to which to compute
the accumulated Gouy phase.
Returns
-------
agouy : float or :class:`.Function`
The accumulated Gouy phase up to the given `point`.
"""
if isinstance(point, (OpticalNode, Port)):
point = point.component
point = self.__get_component(point)
agouy = 0
for comp, info in self.comp_info.items():
if comp == point:
break
agouy += info.get("acc_gouy", 0)
return agouy
[docs] def abcd(self, up_to=None):
"""Composite ABCD matrix up to a specific point in the path.
Parameters
----------
up_to : :class:`.OpticalNode` or :class:`.Port`, str, optional
The location in the path at which to get the composite ABCD matrix. This
can be an optical node or a port. When `None` it will be the `to_node` of
the propgagtion.
Returns
-------
M : :class:`numpy.ndarray`
The ABCD matrix, as a NumPy array, computed up to the specified location.
Raises
------
ke : KeyError
If `up_to` is a node or port which does not exist within the solution.
te : TypeError
If `up_to` is not an :class:`.OpticalNode` or :class:`.Port`.
"""
if up_to is None:
up_to = self.end_node
if isinstance(up_to, str):
try:
up_to = next(filter(lambda node: node.full_name == up_to, self.nodes))
except StopIteration:
raise FinesseException(
f"Could not find a node in this propagation with the name `{up_to}`"
)
if isinstance(up_to, OpticalNode):
if up_to not in self.node_info:
raise KeyError(
f"No optical node of name {up_to.full_name} in the solution."
)
M = self.node_info[up_to]["ABCD"]
elif isinstance(up_to, Port):
ientry = self.node_info.get(up_to.i, {})
oentry = self.node_info.get(up_to.o, {})
if not ientry and not oentry:
raise KeyError(f"No port of name {up_to.full_name} in the solution.")
in_M = ientry.get("ABCD", None)
out_M = oentry.get("ABCD", None)
if in_M is not None:
M = in_M
elif out_M is not None:
M = out_M
else:
raise RuntimeError(
"Bug encountered! No composite ABCD matrix entry found "
f"at the port {up_to.full_name}."
)
## TODO (sjr) Add support for up_to being a Connector (or name of Connector)
else:
raise TypeError(f"Invalid type for up_to: {up_to}")
return M
[docs] def q(self, at) -> BeamParam:
"""Beam parameter at a given node of the path.
Parameters
----------
at : :class:`.OpticalNode` or str
The location in the path at which to get the beam parameter. This can
be an optical node or the name of the optical node.
Returns
-------
q : :class:`.BeamParam`
The beam parameter corresponding to the specified node.
Raises
------
ke : KeyError
If `at` is a node which does not exist within the solution.
ve : ValueError
If `at` is a string corresponding to a node which doesn't
exist in the associated model.
te : TypeError
If `at` is not an :class:`.OpticalNode` or a string.
"""
if isinstance(at, str):
at = self.__get_node(at)
if isinstance(at, OpticalNode):
if at not in self.node_info:
if at.opposite in self.node_info:
# If the opposite node direction is in the solution
# then return the reverse of this beam parameter at
# this node (i.e. -q*)
q = self.node_info[at.opposite]["q"].reverse()
else:
raise KeyError(
f"No optical node of name {at.full_name} (nor its opposite) "
f"in the solution."
)
else:
q = self.node_info[at]["q"]
else:
raise TypeError(f"Invalid type for at: {at}")
return q
[docs] def beamsize(self, at):
"""Beam radius at a given location of the path.
Parameters
----------
See :meth:`.PropagationSolution.q`.
Returns
-------
w : float or :class:`.Function`
Beam size corresponding to the specified node.
Raises
------
See :meth:`.PropagationSolution.q`.
"""
return self.q(at).w
[docs] def w(self, at):
"""Identical to :meth:`PropagationSolution.beamsize`."""
return self.beamsize(at)
[docs] def waistsize(self, at):
"""Waist radius as measured from a given location of the path.
Parameters
----------
See :meth:`.PropagationSolution.q`.
Returns
-------
w : float or :class:`.Function`
Waist size using the beam parameter basis at the specified node.
Raises
------
See :meth:`.PropagationSolution.q`.
"""
return self.q(at).w0
[docs] def w0(self, at):
"""Identical to :meth:`PropagationSolution.waistsize`."""
return self.waistsize(at)
[docs] def waistpos(self, from_point):
"""Waist position as measured at `from_point`.
Parameters
----------
See :meth:`.PropagationSolution.q`.
Returns
-------
w : float or :class:`.Function`
Distance to the waist from the specified node.
Raises
------
See :meth:`.PropagationSolution.q`.
"""
return self.q(from_point).z
[docs] def z0(self, from_point):
"""Identical to :meth:`PropagationSolution.waistpos`."""
return self.waistpos(from_point)
def __getitem__(self, key):
if isinstance(key, OpticalNode):
return self.node_info[key]
if isinstance(key, Connector) or isinstance(key, str):
key = self.__get_component(key)
return self.comp_info[key]
raise TypeError(f"Invalid type for key: {key}")
[docs] def compute_distances_matrix(self, ztype="geometric", subs=None):
"""Compute the distances between each optic, relative to each other.
Returns a dict of dicts for each "delta z". Note that each distance value is
in metres. Use :meth:`PropagationSolution.distances_matrix_table` to create a
tabulated representation of this dict.
Parameters
----------
ztype : str, optional; default: "geometric"
Type of distance, can be either 'geometric' or 'optical'. In the former case
the values are the distances between each optic in terms of sums of space lengths
of each space between them. In the latter case, each value is instead the optical
path length between each component, i.e. the sum of the product of the space
length and refractive index of each space between them.
subs : dict, optional
A dictionary of model parameter to value substitutions
to pass to the ``eval`` methods of symbolic expressions.
If this solution object is not symbolic then this argument
is ignored.
Returns
-------
deltas : dict
Dict of dicts for each dz between components.
"""
if not self.symbolic and subs is not None:
warn(f"Ignoring {subs=} kwarg as PropagationSolution is non-symbolic.")
deltas = {}
outer_done = set()
for node1, info1 in self.node_info.items():
comp1 = node1.component
if comp1 in outer_done:
continue
inner_done = set()
deltas[comp1] = {}
for node2, info2 in self.node_info.items():
comp2 = node2.component
if comp2 in inner_done:
continue
z2 = self._eval_z_for_display(info2, ztype=ztype, subs=subs)
z1 = self._eval_z_for_display(info1, ztype=ztype, subs=subs)
deltas[comp1][comp2] = z2 - z1
inner_done.add(comp2)
outer_done.add(comp1)
return deltas
[docs] def distances_matrix_table(
self, ztype="geometric", subs=None, numfmt=None, **kwargs
):
"""Returns the distances between each optic, relative to each other, in a table.
Parameters
----------
ztype : str, optional; default: "geometric":
See :meth:`.PropagationSolution.compute_distances_matrix`.
subs : dict, optional
A dictionary of model parameter to value substitutions
to pass to the ``eval`` methods of symbolic expressions.
If this solution object is not symbolic then this argument
is ignored.
numfmt : str or func, optional
Either a function to format numbers or a formatting string. The
function must return a string. Defaults to using an SI scale function.
**kwargs : dict, optional
Additional arguments to create the table.
See `finesse.utilities.tables.NumberTable` for further documentation.
The arguments `table`, `colnames` and `rownames` are already used
and should not be passed.
"""
deltas = self.compute_distances_matrix(ztype=ztype, subs=subs)
table = [list(deltas[comp].values()) for comp in deltas]
colnames = [comp.name for comp in self.components]
rownames = [comp.name for comp in deltas]
if numfmt is None:
numfmt = partial(scale_si, units="m")
return NumberTable(
table,
colnames=colnames,
rownames=rownames,
numfmt=numfmt,
**kwargs,
)
[docs] def position(self, point, ptype="geometric"):
"""Gets the position of the specified `point` relative to the start node.
Parameters
----------
point : :class:`.OpticalNode` or :class:`.Port` or :class:`.Connector` or str
The location in the path from which to obtain the relative position. This can
be an optical node, a port, a connector or the name of a connector.
ptype : str
Type of distance, can be either 'geometric' or 'optical'. In the former case
the value returned is the distance from the start node to `point` as a sum
of each space length. In the latter case the value returned will be the optical
path length from the start node to `point`, i.e. a sum of each space length
multiplied by its refractive index.
Returns
-------
z : float or symbol
The relative distance from the start node to the measured `point`.
"""
if ptype.casefold() == "geometric":
zentry = "z"
elif ptype.casefold() == "optical":
zentry = "z_optical"
else:
raise ValueError(
f"Unrecognised value for ptype: {ptype}. This must be either "
"'geometric' or 'optical'."
)
if isinstance(point, OpticalNode):
if point not in self.node_info:
raise KeyError(
f"No optical node of name {point.full_name} in the solution."
)
else:
z = self.node_info[point][zentry]
elif isinstance(point, Port):
ientry = self.node_info.get(point.i, {})
oentry = self.node_info.get(point.o, {})
if not ientry and not oentry:
raise KeyError(f"No port of name {point.full_name} in the solution.")
z1 = ientry.get(zentry, None)
z2 = oentry.get(zentry, None)
if z1 is not None and z2 is not None:
if z1 != z2:
raise RuntimeError(
f"Bug encountered! Positions of nodes {point.i.full_name} "
f"and {point.o.full_name} not equal ({z1} != {z2})"
)
z = z1
else:
z = z1 or z2
elif isinstance(point, Connector) or isinstance(point, str):
point = self.__get_component(point)
z = None
for node in point.optical_nodes:
if node in self.node_info:
z = self.node_info[node][zentry]
break
if z is None:
raise KeyError(f"No component of name {point.name} in the solution.")
else:
raise TypeError("Unrecognised type for argument point.")
return z
[docs] def table(self, subs=None, numfmt=None, **kwargs):
"""Construct a table showing the beam properties at each node.
Parameters
----------
subs : dict, optional
A dictionary of model parameter to value substitutions
to pass to the ``eval`` methods of symbolic expressions.
If this solution object is not symbolic then this argument
is ignored.
numfmt : str or func, optional
Either a function to format numbers or a formatting string. The
function must return a string. Defaults to "{:.3f}" for the first
7 columns and `lambda q: f"{q.real:.3f} + {q.imag:.3f}j"` for the
last one.
**kwargs : dict, optional
Additional arguments to create the table.
See `finesse.utilities.tables.NumberTable` for further documentation.
The arguments `table`, `colnames` and `rownames` are already used
and should not be passed.
Returns
-------
table : finesse.utilities.NumberTable
"""
if not self.symbolic and subs is not None:
warn(f"Ignoring {subs=} kwarg as PropagationSolution is non-symbolic.")
table = []
names = []
headers = ["z", "w0", "zr", "w", "RoC", "S", "Acc. Gouy", "q"]
if numfmt is None:
numfmt = (
[partial(scale_si, units="m")] * 5
+ [partial(scale_si, units="D")]
+ [partial(scale_si, units="°")]
+ [lambda q: f"{q.real:.3f} + {q.imag:.3f}j"]
)
agouy = 0
for node, info in self.node_info.items():
z = self._eval_z_for_display(info, subs=subs)
q = self._eval_q_for_display(info, subs=subs)
if node.is_input: # accumulate the Gouy phase
space_info = self.comp_info.get(node.space)
if space_info:
agouy += space_info.get("acc_gouy", 0)
if isinstance(agouy, Symbol):
agouy_val = agouy.eval(subs=subs)
else:
agouy_val = agouy
table.append([z, q.w0, q.zr, q.w, q.Rc, q.S, agouy_val, q])
names.append(node.full_name)
return NumberTable(table, headers, names, numfmt=numfmt)
def __str__(self):
return str(self.table())
[docs] def print(self, subs=None, numfmt=None, **kwargs):
"""Print the propagated beam properties at each node in a table format.
This internally calls :meth:`.PropagationSolution.table` and
prints its return string.
Parameters
----------
subs : dict, optional
A dictionary of model parameter to value substitutions
to pass to the ``eval`` methods of symbolic expressions.
If this solution object is not symbolic then this argument
is ignored.
numfmt : str or func, optional
Either a function to format numbers or a formatting string. The
function must return a string. Defaults to "{:.3f}" for the first
6 columns and `lambda q: f"{q.real:.3f} + {q.imag:.3f}j"` for the
last one.
**kwargs : dict, optional
Additional arguments to create the table.
See `finesse.utilities.tables.NumberTable` for further documentation.
The arguments `table`, `colnames` and `rownames` are already used
and should not be passed.
"""
self.table(subs=subs, numfmt=numfmt, **kwargs).print()
def _eval_z_for_display(self, info, ztype="geometric", subs=None):
if ztype.casefold() == "geometric":
z = info["z"]
elif ztype.casefold() == "optical":
z = info["z_optical"]
else:
raise ValueError(f"Unrecognised ztype: {ztype}")
if self.symbolic and isinstance(z, Symbol):
if subs is not None:
if not isinstance(subs, dict):
raise TypeError("Expected argument subs to be of type dict")
if any(is_iterable(arg) for arg in subs.values()):
raise ValueError(
"Parameter substitutions for plotting / printing must "
"not use arrays of values."
)
z = z.eval(subs=subs)
return z
def _eval_q_for_display(self, info, subs=None):
q = info["q"]
if self.symbolic and q.symbolic:
if subs is not None:
if not isinstance(subs, dict):
raise TypeError("Expected argument subs to be of type dict")
if any(is_iterable(arg) for arg in subs.values()):
raise ValueError(
"Parameter substitutions for plotting / printing must "
"not use arrays of values."
)
q = q.eval(subs=subs)
return q
def _eval_L_for_display(self, space, subs=None):
if self.symbolic:
if subs is not None:
if not isinstance(subs, dict):
raise TypeError("Expected argument subs to be of type dict")
if any(is_iterable(arg) for arg in subs.values()):
raise ValueError(
"Parameter substitutions for plotting / printing must "
"not use arrays of values."
)
L = space.L.ref.eval(subs=subs)
else:
L = self.__frozen_space_lengths[space]
return L
[docs] def segment(self, node, *args, normalise_z=True, w_scale=1, npts=400, subs=None):
"""Obtain data for a segment of the beam over the space attached to the
specified `node`.
The expected, valid positional `args` are any combination of:
* "beamsize",
* "gouy",
* "curvature",
where all three will be used by default if none of these are given.
Use :meth:`.PropagationSolution.all_segments` to obtain the beam data
over all spaces of the solution.
Parameters
----------
node : :class:`.OpticalNode`
The starting node of the segment.
normalise_z : bool, optional; default: True
Whether to normalise returned ``data["z"]`` array such that
first value of this is zero.
w_scale : scalar, optional; default: 1
Quantity to scale beam size values by if calculating these. For
example, specify `w_scale = 1e3` to get beam sizes in mm. By
default the units of the beam size will be in metres.
npts : int, optional; default: 400
Number of points to use for computing data values.
subs : dict, optional
A dictionary of model parameter to value substitutions
to pass to the ``eval`` methods of symbolic expressions.
If this solution object is not symbolic then this argument
is ignored.
Returns
-------
zs : :class:`numpy.ndarray`
Array of z-axis values corresponding to the position of the node
up to the length of the attached space. If `normalise_z` is True
then the position of `node` will be subtracted from all values, such
that the first value in this array will be zero.
data : dict
Dictionary of data mapping ``args : values``, where `args` are those
specified (see above) and `values` are the arrays of values corresponding
to each of these args as a function of the z-axis values.
"""
if not args:
args = ("beamsize", "gouy", "curvature")
if not isinstance(node, OpticalNode):
raise NotImplementedError(
"Obtaining beam segments from locations other than OpticalNodes "
"is not yet supported."
)
if node.is_input or node is self.end_node:
raise ValueError(
"Cannot obtain a beam segment corresponding to "
f"the node {node.full_name}. This node must be an "
"output node and cannot be the end node of the solution."
)
info = self.node_info.get(node)
if info is None:
raise ValueError(f"Node {node.full_name} not present in the solution!")
# Store the z data and each arg data array here
data = {}
z = self._eval_z_for_display(info, subs=subs)
q = self._eval_q_for_display(info, subs=subs)
# Make array of values from [0, space_length]
L = self._eval_L_for_display(node.space, subs=subs)
intra_zs = np.linspace(0, L, npts)
zs = z + intra_zs
if normalise_z:
zs -= zs[0]
for arg in args:
values = getattr(q, arg)(q.z + intra_zs)
if arg == "beamsize":
values *= w_scale
# Computing Gouy phase so convert to degrees and
# subtract first value to get Gouy phase accumulated
# over the segment rather than absolute phases
if arg == "gouy":
values = np.degrees(values)
values -= values[0]
data[arg] = values
return zs, data
def __adaptive_npts_per_segment(self, N, subs=None):
dS_per_space = {}
via_waists = {}
end_node = self.end_node
for node1, node2 in pairwise(self.nodes):
if node1.is_input or node1 is end_node:
continue
space = node1.space
q1 = self._eval_q_for_display(self.node_info[node1], subs=subs)
q2 = self._eval_q_for_display(self.node_info[node2], subs=subs)
# Compute change in defocus over the space
dS_per_space[space] = abs(q2.S - q1.S)
# And determine whether we go through a waist
via_waists[space] = np.sign(q1.S) != np.sign(q2.S)
# Get the maximum defocus change
max_dS = max(dS_per_space.values())
for space, via_waist in zip(dS_per_space, via_waists.values()):
# If a waist exists in this space then want to automatically
# increase the weighting by resetting dS to twice the maximum
# so that resolution increases around the waist
if via_waist:
dS_per_space[space] = max_dS * 2
dS_sum = sum(dS_per_space.values())
npts_per_space = {}
for space, dS in dS_per_space.items():
# Now determine the number of points to use for this segment
# by the size of the defocus change
n = int(N * dS / dS_sum)
# If the defocus change was zero, or small enough such that n is
# less than two, let's just set the number of points for this
# segment to two, this means that total number of points can
# be a few larger than N but that's not really a problem
if n < 2:
n = 2
npts_per_space[space] = n
return npts_per_space
def __equal_npts_per_segment(self, N, **_):
nspaces = len(self.spaces)
npts_per_space = {}
for space in self.spaces:
npts_per_space[space] = int(N / nspaces)
return npts_per_space
def __all_npts_per_segment(self, N, **_):
npts_per_space = {}
for space in self.spaces:
npts_per_space[space] = N
return npts_per_space
[docs] def all_segments(
self,
*args,
add_gouy=True,
w_scale=1,
npts=1000,
resolution="adaptive",
subs=None,
):
"""Construct a dictionary containing beam data for all segments of the solution.
The expected, valid positional arguments are any combination of:
* "beamsize",
* "gouy",
* "curvature",
where all three will be used by default if no args are given.
Use :meth:`.PropagationSolution.segment` to obtain the beam data
over a single space of the solution.
Parameters
----------
add_gouy : bool, optional; default: True
Whether to add the last Gouy phase from previous segment
to all values of current segment, thereby constructing each
"gouy" array entry as accumulated Gouy phases over all
segments.
w_scale : scalar, optional; default: 1
Quantity to scale beam size values by if calculating these. For
example, specify `w_scale = 1e3` to get beam sizes in mm. By
default the units of the beam size will be in metres.
npts : int, optional; default: 1000
Number of points to use for computing data values. The actual number
of data points used per segment depends upon the `resolution` argument.
resolution : str, optional; default: "adaptive"
The method of segment resolution setting to use. This can be one
of three arguments:
* "adaptive": Sets the number of points per segment in such a way as
to attempt to increase the resolution near the waist. Each segment
will have a number of points allocated to it accordingly, with the
total number of points across all segments then approximately equal
to `npts`.
* "equal": Allocates an equal number of points to each segment, i.e.
each segment has ``int(npts / len(self.spaces))`` points.
* "all": Gives ``npts`` to all segments, such that the total number of
data points across all segments is ``len(self.spaces) * npts``.
subs : dict, optional
A dictionary of model parameter to value substitutions
to pass to the ``eval`` methods of symbolic expressions.
If this solution object is not symbolic then this argument
is ignored.
Returns
-------
data : dict
Dictionary of data mapping ``space : zs, segdata``, where `space` is
each space (i.e. segment) in the solution path, `zs` are the z-axis
values and `segdata` is the dict of data values for the targeted beam
properties over the space.
"""
data = {}
if not args:
args = ("beamsize", "gouy", "curvature")
resolution_map = {
"adaptive": self.__adaptive_npts_per_segment,
"equal": self.__equal_npts_per_segment,
"all": self.__all_npts_per_segment,
}
resolution_method = resolution_map.get(resolution.casefold())
if resolution_method is None:
raise ValueError(
f"Unexpected value for resolution argument: {resolution}. Expected "
"one of: 'adaptive', 'equal' or 'all'."
)
npts_per_space = resolution_method(npts, subs=subs)
prev_gouy = 0
end_node = self.end_node
for node in self.nodes:
if node.is_input or node is end_node:
continue
zs, segdata = self.segment(
node,
*args,
# Don't want to normalise each start z to zero now as
# we want each to start from actual node position
normalise_z=False,
w_scale=w_scale,
npts=npts_per_space[node.space],
subs=subs,
)
# Accumulating Gouy over all segments so make adjustments
if "gouy" in args and add_gouy:
gouys = segdata["gouy"]
# Add on the last value of Gouy from prev segment so
# that phase is accumulated over full path
gouys += prev_gouy
prev_gouy = gouys[-1]
data[node.space] = zs, segdata
return data
[docs] def plot_beamsizes(self, **kwargs):
"""Plot the beam sizes over the propagated path.
This is just a convenience wrapper which is identical to calling
:meth:`PropagationSolution.plot` with ``"beamsize"`` as the arg.
Returns
-------
fig : Figure
Handle to the figure.
ax : Axis
Handle to the axis.
"""
return self.plot("beamsize", **kwargs)
[docs] def plot_acc_gouy(self, **kwargs):
"""Plot the accumulated Gouy phases over the propagated path.
This is just a convenience wrapper which is identical to calling
:meth:`PropagationSolution.plot` with ``"gouy"`` as the arg.
Returns
-------
fig : Figure
Handle to the figure.
ax : Axis
Handle to the axis.
"""
return self.plot("gouy", **kwargs)
[docs] def plot_curvatures(self, **kwargs):
"""Plot the wavefront curvatures over the propagated path.
This is just a convenience wrapper which is identical to calling
:meth:`PropagationSolution.plot` with ``"curvature"`` as the arg.
Returns
-------
fig : Figure
Handle to the figure.
ax : Axis
Handle to the axis.
"""
return self.plot("curvature", **kwargs)
[docs] def plot(
self,
*args,
filename=None,
show=False,
ignore=None,
name_xoffsets=None,
name_yoffsets=None,
ylims=None,
npts=1000,
resolution="adaptive",
single_sided=True,
subs=None,
):
"""Plot any combination of the beam sizes, accumulated Gouy phases and / or
wavefront curvatures over the propagated path.
The expected, valid positional arguments are any combination of:
- "beamsize",
- "gouy",
- "curvature",
or "all" to plot all of the above.
If no positional args are given then the beamsize (first axis) and accumulated
Gouy phase (second axis) will be plotted by default.
The locations of each component will be marked on the figure, unless the
component is in `ignore` or the component has "AR" or "HR" in its name.
Parameters
----------
filename : str or file-like, optional
Name of a file or existing file object to save the figure to.
show : bool, optional; default: True
Whether to show the figure.
ignore : component, sequence of, optional
A component or sequence of components to ignore when
making markers.
name_xoffsets : dict, optional
Dictionary of component names to x-axis offsets for shifting where the
component name text is placed. The offset value is interpreted in terms
of data co-ordinates.
name_yoffsets : dict, optional
Dictionary of component names to y-axis offsets for shifting where the
component name text is placed. The offset value is interpreted in terms
of data co-ordinates.
ylims : dict, optional
Dictionary of target names (i.e. "beamsize", "gouy" or "curvature") to
manual axis y-limits.
npts : int, optional; default: 1000
See equivalent argument in :meth:`.PropagationSolution.all_segments`.
resolution : str, optional; default: "adaptive"
See equivalent argument in :meth:`.PropagationSolution.all_segments`.
single_sided : bool
If False the beamsize plot is a single positive line.
subs : dict, optional
A dictionary of model parameter to value substitutions
to pass to the ``eval`` methods of symbolic expressions.
If this solution object is not symbolic then this argument
is ignored.
Returns
-------
fig : Figure
Handle to the figure.
axs : axes
The axis handles.
"""
import matplotlib.pyplot as plt
if not args:
args = ("beamsize", "gouy")
if "all" in args:
args = ("beamsize", "gouy", "curvature")
valid_args = ("beamsize", "gouy", "curvature")
if any(arg not in valid_args for arg in args):
raise ValueError(
"Invalid target argument in args, expected any "
f"combination of {valid_args} or 'all'"
)
if not self.symbolic and subs is not None:
warn(f"Ignoring {subs=} kwarg as PropagationSolution is non-symbolic.")
N = len(args)
fig, axs = plt.subplots(N, 1, sharex=True)
if N == 1:
axs = [axs]
maximums = {k: 0 for k in args}
minimums = {k: float("inf") for k in args}
data = self.all_segments(
*args, w_scale=1e3, npts=npts, resolution=resolution, subs=subs
)
for zs, segd in data.values():
for i, arg in enumerate(args):
y = segd[arg]
if arg == "beamsize":
if single_sided:
axs[i].plot(zs, y, color="r")
else:
axs[i].fill_between(zs, y, -y, color="r")
else:
axs[i].plot(zs, y)
maximums[arg] = max(maximums[arg], y.max())
minimums[arg] = min(minimums[arg], y.min())
if ignore is None:
ignore = []
if not is_iterable(ignore):
ignore = [ignore]
if name_xoffsets is None:
name_xoffsets = {}
if name_yoffsets is None:
name_yoffsets = {}
for node, info in self.node_info.items():
if node.is_input:
z = self._eval_z_for_display(info, subs=subs)
comp = node.component
if "AR" not in comp.name and comp not in ignore:
name = comp.name
x_offset = name_xoffsets.get(name, 0)
y_offset = name_yoffsets.get(name, 0)
# display the name in a nicer way
name = name.replace("_", "\n")
n_newlines = name.count("\n")
for i, arg in enumerate(args):
if not i:
axs[i].axvline(
z, 0.12 + 0.1 * n_newlines, color="k", linestyle="--"
)
if arg == "beamsize" and not single_sided:
ytext_pos = -1 * maximums[arg]
else:
ytext_pos = minimums[arg]
ytext_pos += y_offset
axs[i].text(
z + x_offset, ytext_pos, name, ha="center", va="center"
)
else:
axs[i].axvline(z, color="k", linestyle="--")
for ax in axs:
ax.set_xlim(0, None)
axs[-1].set_xlabel("Distance [m]")
ylabel_mappings = {
"beamsize": "Beam size [mm]",
"gouy": "Gouy phase\naccumulation [deg]",
"curvature": "Wavefront curvature [1/m]",
}
if ylims is None:
ylims = {}
for i, arg in enumerate(args):
if arg != "beamsize":
ylim = ylims.get(arg, None)
if ylim is None:
axs[i].set_ylim(0 if arg == "gouy" else None, maximums[arg])
else:
axs[i].set_ylim(ylim[0], ylim[1])
ylabel = ylabel_mappings.get(arg, arg)
axs[i].set_ylabel(ylabel)
if filename is not None:
fig.savefig(filename)
if show:
plt.show()
if N == 1:
return fig, axs[0]
return fig, axs
[docs] def animate_beamsizes(self, subs, **kwargs):
"""Animate the beam sizes over the propagated path.
This is just a convenience wrapper which is identical to calling
:meth:`PropagationSolution.animate` with ``"beamsize"`` as the arg.
Returns
-------
fig : Figure
Handle to the figure.
ax : Axis
Handle to the axis.
an : FuncAnimation
Handle to the animation.
"""
return self.animate(subs, "beamsize", **kwargs)
[docs] def animate_acc_gouy(self, subs, **kwargs):
"""Animate the accumulated Gouy phases over the propagated path.
This is just a convenience wrapper which is identical to calling
:meth:`PropagationSolution.animate` with ``"gouy"`` as the arg.
Returns
-------
fig : Figure
Handle to the figure.
ax : Axis
Handle to the axis.
an : FuncAnimation
Handle to the animation.
"""
return self.animate(subs, "gouy", **kwargs)
[docs] def animate_curvatures(self, subs, **kwargs):
"""Animate the wavefront curvatures over the propagated path.
This is just a convenience wrapper which is identical to calling
:meth:`PropagationSolution.animate` with ``"curvature"`` as the arg.
Returns
-------
fig : Figure
Handle to the figure.
ax : Axis
Handle to the axis.
an : FuncAnimation
Handle to the animation.
"""
return self.animate(subs, "curvature", **kwargs)
[docs] def animate(
self,
subs,
*args,
filename=None,
show=True,
ignore=None,
name_xoffsets=None,
name_yoffsets=None,
ylims=None,
npts=200,
blit=True,
interval=200,
):
"""Animate any combination of the beam sizes, accumulated Gouy phases and / or
wavefront curvatures over the propagated path using the substitution parameters
in `subs`.
The expected, valid positional arguments (i.e. `*args`) are any combination of:
- "beamsize",
- "gouy",
- "curvature",
or "all" to animate all of the above.
If no positional args are given then the beamsize (first axis) and accumulated
Gouy phase (second axis) will be animated by default.
At least one model parameter substitution in `subs` must be
array-like - this will then be the animation axis. If more than
one are array-like then each array must be the same size - the
substitutions will then be carried out simulatenously. Any scalar
value entry in `subs` will be applied before the animation axis.
Parameters
----------
subs : dict
Dictionary of model parameter substitutions. At least one entry
must be array-like such than animation can be performed over this
axis.
If multiple substitutions are arrays then they must all be the same
size.
filename : str, optional
Name of a file to save the animation to.
show : bool, optional; default: True
Whether to show the resulting animation.
ignore : component, sequence of, optional
A component or sequence of components to ignore when
making markers.
name_xoffsets : dict, optional
Dictionary of component names to x-axis offsets for shifting where the
component name text is placed. The offset value is interpreted in terms
of data co-ordinates.
name_yoffsets : dict, optional
Dictionary of component names to y-axis offsets for shifting where the
component name text is placed. The offset value is interpreted in terms
of data co-ordinates.
ylims : dict, optional
Dictionary of target names (i.e. "beamsize", "gouy" or "curvature") to
manual axis y-limits.
npts : int, optional; default: 200
Number of points to use for computing beam sizes and
Gouy phases over spaces.
blit : bool, optional; default: True
Whether blitting is used to optimize drawing.
interval : int, optional; default: 200
Delay between frames in milliseconds.
Returns
-------
fig : Figure
Handle to the figure.
axs : axes
The axis handles.
an : FuncAnimation
Handle to the animation.
"""
import matplotlib.animation as animation
import matplotlib.pyplot as plt
if not self.symbolic:
raise RuntimeError(
"Animation is only applicable to symbolic PropagationSolution objects"
)
if not args:
args = ("beamsize", "gouy")
if "all" in args:
args = ("beamsize", "gouy", "curvature")
valid_args = ("beamsize", "gouy", "curvature")
if any(arg not in valid_args for arg in args):
raise ValueError(
"Invalid target argument in args, expected any "
f"combination of {valid_args} or 'all'"
)
anim_params = dict(filter(lambda x: is_iterable(x[1]), subs.items()))
if not anim_params:
raise ValueError("Expected at least one array-like substitution in subs.")
N = len(list(anim_params.values())[0])
if any(len(arr) != N for arr in anim_params.values()):
raise ValueError("Lengths of all array-like substitutions must be equal.")
# Dictionary of singular value substitutions to use at each animation point
isubs = {}
static_params = dict(filter(lambda x: not is_iterable(x[1]), subs.items()))
# Set fixed parameter substitutions
for param, value in static_params.items():
isubs[param] = value
if ignore is None:
ignore = []
if not is_iterable(ignore):
ignore = [ignore]
# Data dictionaries storing arrays of propagated distances, beamsizes
# accumulated Gouy phases and component positions at each node
# for each animation point
node_xdata = {}
node_ydata = {k: {} for k in args}
comp_positions = {}
for node in self.node_info:
if not node.is_input:
node_xdata[node] = np.zeros((N, npts))
for arg in args:
node_ydata[arg][node] = np.zeros((N, npts))
else:
comp = node.component
if "AR" not in comp.name and comp not in ignore:
comp_positions[node] = np.ma.zeros(N)
maximums = {k: 0 for k in args}
minimums = {k: float("inf") for k in args}
end_node = self.end_node
for i in range(N):
# Update animation parameters
for param, array in anim_params.items():
isubs[param] = array[i]
# TODO (sjr) Replace this loop with an all_segments call, will require
# some careful rejigging of code in this method so I'll leave
# this for a later date
prev_acc_gouy = 0
for node, info in self.node_info.items():
if not node.is_input and node != end_node:
z = self._eval_z_for_display(info, subs=isubs)
q = self._eval_q_for_display(info, subs=isubs)
# Make array of values from [0, space_length]
L = self._eval_L_for_display(node.space, subs=isubs)
intra_zs = np.linspace(0, L, npts)
node_xdata[node][i][:] = z + intra_zs
for arg in args:
data = getattr(q, arg)(q.z + intra_zs)
if arg == "beamsize":
data /= 1e-3 # scale to mm
elif arg == "gouy":
# Plotting accumulated Gouy so need to modify data as follows:
# - convert to degrees
# - subtract the Gouy phase directly at the output node to get
# Gouy phase accumulated over this space
# - then add previous accumulated Gouy to keep cumulative over full path
data = np.degrees(data)
data -= data[0]
data += prev_acc_gouy
prev_acc_gouy = data[-1]
maximums[arg] = max(maximums[arg], data.max())
minimums[arg] = min(minimums[arg], data.min())
node_ydata[arg][node][i][:] = data
else:
if node in comp_positions:
comp_positions[node][i] = self._eval_z_for_display(
info, subs=isubs
)
Np = len(args)
fig, axs = plt.subplots(Np, 1, sharex=True)
if Np == 1:
axs = [axs]
# Lists of the various artists to animate
collections = [] # beam size fill shapes
lines = {k: [] for k in args if k != "beamsize"}
comp_pos_lines = [] # component position lines
comp_name_texts = [] # names of components
for i, arg in enumerate(args):
for xdata, ydata in zip(node_xdata.values(), node_ydata[arg].values()):
if arg == "beamsize":
collections.append(
axs[i].fill_between(xdata[0], ydata[0], -ydata[0], color="r")
)
else:
(line,) = axs[i].plot([], [])
lines[arg].append(line)
if name_xoffsets is None:
name_xoffsets = {}
if name_yoffsets is None:
name_yoffsets = {}
comp_name_offsets = []
for node, zs in comp_positions.items():
name = node.component.name
x_offset = name_xoffsets.get(name, 0)
y_offset = name_yoffsets.get(name, 0)
name = name.replace("_", "\n")
n_newlines = name.count("\n")
for i, arg in enumerate(args):
z0 = zs[0]
if not i:
vline = axs[i].axvline(
z0, 0.12 + 0.1 * n_newlines, color="k", linestyle="--"
)
if arg == "beamsize":
ytext_pos = -1 * maximums[arg]
else:
ytext_pos = minimums[arg]
ytext_pos += y_offset
ct = axs[i].text(
z0 + x_offset, ytext_pos, name, ha="center", va="center"
)
comp_name_texts.append(ct)
comp_name_offsets.append(x_offset)
else:
vline = axs[i].axvline(z0, color="k", linestyle="--")
comp_pos_lines.append(vline)
anim_txt_former = lambda k: "\n".join(
f"{p.full_name} = {v[k]:.2f} {p.units}" for p, v in anim_params.items()
)
anim_text = axs[-1].text(
0.15,
0.9,
"",
ha="center",
va="center",
transform=axs[-1].transAxes,
)
axs[-1].set_xlabel("Distance [m]")
ylabel_mappings = {
"beamsize": "Beam size [mm]",
"gouy": "Gouy phase\naccumulation [deg]",
"curvature": "Wavefront curvature [1/m]",
}
if ylims is None:
ylims = {}
for i, arg in enumerate(args):
if arg != "beamsize":
ylim = ylims.get(arg, None)
if ylim is None:
axs[i].set_ylim(0 if arg == "gouy" else None, maximums[arg])
else:
axs[i].set_ylim(ylim[0], ylim[1])
ylabel = ylabel_mappings.get(arg, arg)
axs[i].set_ylabel(ylabel)
# Set maximum propagated distance
max_x = 0
for xdata in node_xdata.values():
max_x = max(max_x, xdata.max())
for ax in axs:
ax.set_xlim(0, max_x)
try:
w_ax_index = args.index("beamsize")
except ValueError:
w_ax_index = -1
all_artists = collections + comp_pos_lines + comp_name_texts + [anim_text]
for arg in args:
if arg == "beamsize":
continue
all_artists += lines[arg]
# Need to create a dummy fig and ax for making a fill_between collection
# in each segment -> the actual collections then get modified using the
# vertices of this dummy collection during the animation
dummy_fig, dummy_ax = plt.subplots()
def animate(frame_index):
if w_ax_index != -1:
for coll, xdata, ydata_w in zip(
collections,
node_xdata.values(),
node_ydata["beamsize"].values(),
):
dummy_coll = dummy_ax.fill_between(
xdata[frame_index],
ydata_w[frame_index],
-ydata_w[frame_index],
color="r",
)
dummy_path = dummy_coll.get_paths()[0]
path = coll.get_paths()[0]
path.vertices[:, 0] = dummy_path.vertices[:, 0]
path.vertices[:, 1] = dummy_path.vertices[:, 1]
for arg in args:
if arg == "beamsize":
continue
for line, xdata, ydata in zip(
lines[arg],
node_xdata.values(),
node_ydata[arg].values(),
):
line.set_xdata(xdata[frame_index])
line.set_ydata(ydata[frame_index])
for j, zs in zip(
range(0, len(comp_pos_lines), Np), comp_positions.values()
):
for i in range(Np):
vline = comp_pos_lines[j + i]
vline.set_xdata([zs[frame_index]])
for ctname_txt, offset, zs in zip(
comp_name_texts, comp_name_offsets, comp_positions.values()
):
ctname_txt.set_x(zs[frame_index] + offset)
anim_text.set_text(anim_txt_former(frame_index))
return all_artists
an = animation.FuncAnimation(
fig, animate, frames=N, blit=blit, interval=interval
)
# Get rid of the dummy figure now so that it doesn't get shown / saved
plt.close(dummy_fig)
if filename is not None:
an.save(filename)
if show:
plt.show()
if Np == 1:
return fig, axs[0], an
return fig, axs, an
[docs]class AstigmaticPropagationSolution(BaseSolution):
"""Solution representation of a call to
:func:`finesse.tracing.tools.propagate_beam_astig`.
Internally this stores two :class:`.PropagationSolution` instances which are used to
access the per-plane beam parameters. These propagation solutions can be accessed
via :attr:`.AstigmaticPropagationSolution.ps_x` and
:attr:`.AstigmaticPropagationSolution.ps_y` for the tangential and sagittal planes,
respectively.
"""
[docs] def __init__(self, name, ps_x: PropagationSolution, ps_y: PropagationSolution):
super().__init__(name)
self.__ps_x = ps_x
self.__ps_y = ps_y
self.__symbolic = ps_x.symbolic
self.empty = False
@property
def symbolic(self):
"""Whether the astigmatism solution is symbolic."""
return self.__symbolic
@property
def ps_x(self):
"""The internal :class:`.PropagationSolution` for the tangential plane."""
return self.__ps_x
@property
def ps_y(self):
"""The internal :class:`.PropagationSolution` for the sagittal plane."""
return self.__ps_y
@property
def start_node(self):
"""The starting node of the propagation."""
return self.ps_x.start_node
@property
def end_node(self):
"""The final node of the propagation."""
return self.ps_x.end_node
@property
def nodes(self):
"""A list of all the nodes traversed, in order."""
return self.ps_x.nodes
@property
def ports(self):
"""A list of all the ports traversed, in order."""
return self.ps_x.ports
@property
def spaces(self):
"""A list of all spaces traversed, in order."""
return self.ps_x.spaces
@property
def components(self):
"""A list of all components (excluding spaces) traversed, in order."""
return self.ps_x.components
@property
def path_length(self):
"""The geometric path length of the traversed path."""
return self.ps_x.path_length
@property
def overlaps(self):
"""A dict of nodes to the qx, qy overlaps at these nodes."""
return {node: self.overlap(node) for node in self.nodes}
[docs] def qx(self, at):
"""Tangential beam parameter at a given location of the path.
See :meth:`.PropagationSolution.q` for parameters and return object
descriptions.
"""
return self.ps_x.q(at)
[docs] def qy(self, at):
"""Sagittal beam parameter at a given location of the path.
See :meth:`.PropagationSolution.q` for parameters and return object
descriptions.
"""
return self.ps_y.q(at)
[docs] def overlap(self, at):
"""Overlap between tangential and sagittal beam parameters at a given location
of the path.
See :meth:`.PropagationSolution.q` for parameters description.
Returns
-------
O : float or :class:`.Function`
Overlap between the beam parameters in each plane, at the specified node.
"""
return BeamParam.overlap(self.qx(at), self.qy(at))
[docs] def plot(
self,
*args,
filename=None,
show=True,
ignore=None,
name_xoffsets=None,
name_yoffsets=None,
ylims=None,
npts=1000,
resolution="equal",
subs=None,
):
"""Plot any combination of the beam sizes, accumulated Gouy phases and / or
wavefront curvatures over the propagated path, showing the values for both
planes.
The expected, valid positional arguments are any combination of:
- "beamsize",
- "gouy",
- "curvature",
or "all" to plot all of the above.
If no positional args are given then the beamsize (first axis) and accumulated
Gouy phase (second axis) will be plotted by default.
.. note::
The resulting figure will be divided into two columns, the first giving the
absolute quantity values for both planes and the second giving the difference
between the quantities in the two planes (tangential plane minus sagittal plane).
For beam size plots, the tangential plane values are shown in red whilst
sagittal are shown in blue. Whilst for any other quantity, the tangential
plane values are solid lines and sagittal are dashed lines.
The locations of each component will be marked on the figure, unless the
component is in `ignore` or the component has "AR" or "HR" in its name.
Parameters
----------
filename : str or file-like, optional
Name of a file or existing file object to save the figure to.
show : bool, optional; default: True
Whether to show the figure.
ignore : component, sequence of, optional
A component or sequence of components to ignore when
making markers.
name_xoffsets : dict, optional
Dictionary of component names to x-axis offsets for shifting where the
component name text is placed. The offset value is interpreted in terms
of data co-ordinates.
name_yoffsets : dict, optional
Dictionary of component names to y-axis offsets for shifting where the
component name text is placed. The offset value is interpreted in terms
of data co-ordinates.
ylims : dict, optional
Dictionary of target names (i.e. "beamsize", "gouy" or "curvature") to
manual axis y-limits.
npts : int, optional; default: 1000
See equivalent argument in :meth:`.PropagationSolution.all_segments`.
resolution : str, optional; default: "equal"
See equivalent argument in :meth:`.PropagationSolution.all_segments`.
subs : dict, optional
A dictionary of model parameter to value substitutions
to pass to the ``eval`` methods of symbolic expressions.
If this solution object is not symbolic then this argument
is ignored.
Returns
-------
fig : Figure
Handle to the figure.
axs : axes
The axis handles.
"""
import matplotlib.pyplot as plt
if not args:
args = ("beamsize", "gouy")
if "all" in args:
args = ("beamsize", "gouy", "curvature")
valid_args = ("beamsize", "gouy", "curvature")
if any(arg not in valid_args for arg in args):
raise ValueError(
"Invalid target argument in args, expected any "
f"combination of {valid_args} or 'all'"
)
if not self.symbolic and subs is not None:
warn(
f"Ignoring {subs=} kwarg as AstigmaticPropagationSolution is "
f"non-symbolic."
)
N = len(args)
fig, axs = plt.subplots(N, 2, sharex=True)
if N == 1:
axs = np.array([axs])
maximums = {k: 0 for k in args}
diff_mins = {k: 0 for k in args}
if resolution.casefold() == "adaptive":
raise NotImplementedError(
"Adaptive resolution method for astigmatic propagation solution "
"plotting has an outstanding issue and so is not yet supported."
)
data_x = self.ps_x.all_segments(
w_scale=1e3, npts=npts, resolution=resolution, subs=subs
)
data_y = self.ps_y.all_segments(
w_scale=1e3, npts=npts, resolution=resolution, subs=subs
)
for (zs_x, segd_x), (zs_y, segd_y) in zip(data_x.values(), data_y.values()):
for i, arg in enumerate(args):
vx = segd_x[arg]
vy = segd_y[arg]
if arg == "beamsize":
axs[i][0].fill_between(zs_x, vx, -vx, color="r", alpha=0.5)
axs[i][0].fill_between(zs_y, vy, -vy, color="b", alpha=0.5)
else:
axs[i][0].plot(zs_x, vx)
axs[i][0].plot(zs_y, vy, linestyle="--")
# TODO (sjr) This currently won't work with adaptive resolution
# method as vx and vy may be different size arrays.
# Need to find a way to resolve this. Maybe just force
# each segment in data_x, data_y to have same points
# between the two (bit annoying to handle though).
axs[i][1].plot(zs_x, vx - vy, color="k")
maximums[arg] = max(maximums[arg], vx.max(), vy.max())
diff_mins[arg] = min(diff_mins[arg], (vx - vy).min())
if ignore is None:
ignore = []
if not is_iterable(ignore):
ignore = [ignore]
if name_xoffsets is None:
name_xoffsets = {}
if name_yoffsets is None:
name_yoffsets = {}
for node, info in self.ps_x.node_info.items():
if node.is_input:
z = self.ps_x._eval_z_for_display(info, subs=subs)
comp = node.component
if "AR" not in comp.name and comp not in ignore:
name = comp.name
x_offset = name_xoffsets.get(name, 0)
y_offset = name_yoffsets.get(name, 0)
# display the name in a nicer way
name = name.replace("_", "\n")
n_newlines = name.count("\n")
for i, arg in enumerate(args):
if not i:
for ax in axs[i]:
ax.axvline(
z,
0.12 + 0.1 * n_newlines,
color="k",
linestyle="--",
)
if arg == "beamsize":
ytext_pos = [-1 * maximums[arg], diff_mins[arg]]
else:
ytext_pos = [0, 0]
for ax, ytp in zip(axs[i], ytext_pos):
ax.text(
z + x_offset,
ytp + y_offset,
name,
ha="center",
va="center",
)
else:
for ax in axs[i]:
ax.axvline(z, color="k", linestyle="--")
for ax in axs.flatten():
ax.set_xlim(0, None)
for ax in axs[-1]:
ax.set_xlabel("Distance [m]")
ylabel_mappings = {
"beamsize": "Beam size [mm]",
"gouy": "Gouy phase\naccumulation [deg]",
"curvature": "Wavefront curvature [1/m]",
}
ylabel_diff_mappings = {
"beamsize": r"$\mathrm{w}_\mathrm{x} - \mathrm{w}_\mathrm{y}$ [mm]",
"gouy": r"$\psi_\mathrm{x} - \psi_\mathrm{y}$ [deg]",
"curvature": r"$\mathrm{S}_\mathrm{x} - \mathrm{S}_\mathrm{y}$ [1/m]",
}
if ylims is None:
ylims = {}
for i, arg in enumerate(args):
if arg != "beamsize":
ylim = ylims.get(arg, None)
if ylim is None:
axs[i][0].set_ylim(0 if arg == "gouy" else None, maximums[arg])
else:
axs[i][0].set_ylim(ylim[0], ylim[1])
ylabel = ylabel_mappings.get(arg, arg)
axs[i][0].set_ylabel(ylabel)
dylabel = ylabel_diff_mappings.get(arg)
axs[i][1].set_ylabel(dylabel)
if filename is not None:
fig.savefig(filename)
if show:
plt.show()
if N == 1:
return fig, axs[0]
return fig, axs
[docs]class BeamTraceSolution(BaseSolution):
"""Trace solution corresponding to calls to :meth:`.Model.beam_trace`.
Note that BeamTraceSolution objects are returned via :meth:`.Model.beam_trace`
calls, they should never need to be created manually.
This class provides a dict-like interface to beam trace solution data. If
``trace`` is an instance of this class then one can access the beam parameters
at both planes of a node via
.. code-block:: python
# Using the look-up key notation
qx, qy = trace[node]
# Or the get method
qx, qy = trace.get(node)
One can also access individual plane beam parameters with
.. code-block:: python
# Tangential plane
qx = trace[node].qx
# Sagittal plane
qy = trace[node].qy
A copy of the Python dictionary which stores all the underlying ``node : (qx, qy)``
mappings can be obtained with the :attr:`.BeamTraceSolution.data` property.
To draw a forest representation of the trace solution data, one can simply do
.. code-block:: python
# Prints the forest of beam parameters
print(trace)
# Stores the forest as a string
trace_str = str(trace)
This forest will be ordered by the trace order used for the associated
:meth:`.Model.beam_trace` call which constructed this solution.
"""
NodeData = typing.NamedTuple("NodeData", [("qx", BeamParam), ("qy", BeamParam)])
[docs] def __init__(self, name, data, forest=None):
super().__init__(name)
self._data = {node: self.NodeData(qx, qy) for node, (qx, qy) in data.items()}
self.__forest = forest
self.empty = False # tree drawing fill circle
# TODO (sjr) Temporary workaround for #328, need better output colouring
interactive = is_interactive()
self.__start_highlight = ": \x1b[0;32;40m[" if not interactive else ": ["
self.__end_highlight = "]\x1b[0m" if not interactive else "]"
[docs] def items(self):
"""A view on the underlying dict items."""
return self._data.items()
[docs] def values(self):
"""A view on the underlying dict values."""
return self._data.values()
[docs] def keys(self):
"""A view on the underlying dict keys."""
return self._data.keys()
@property
def data(self):
"""A copy of the underlying dictionary of beam trace solution data.
:`getter`: Returns the beam trace solution data. Read-only.
"""
return self._data.copy()
@property
def data_qx(self):
"""A copy of the underlying `data` dictionary but with only the tangential plane
beam parameters selected.
:`getter`: Returns a dictionary of traced nodes with corresponding tangential
plane beam parameters (read-only).
"""
return {node: qx for node, (qx, _) in self._data.items()}
@property
def data_qy(self):
"""A copy of the underlying `data` dictionary but with only the sagittal plane
beam parameters selected.
:`getter`: Returns a dictionary of traced nodes with corresponding sagittal plane
beam parameters (read-only).
"""
return {node: qy for node, (_, qy) in self._data.items()}
def __getitem__(self, node):
if isinstance(node, OpticalNode):
return self._data[node]
if isinstance(node, Port):
in_q = self._data.get(node.i, None)
out_q = self._data.get(node.o, None)
if in_q is None and out_q is None:
raise KeyError(f"Port {node} not in the trace data.")
return {node.i: in_q, node.o: out_q}
if isinstance(node, Connector):
return {n: self._data[n] for n in node.optical_nodes}
if isinstance(node, str):
search = [n for n in self._data.keys() if n.full_name == node]
if len(search) == 1:
return self.__getitem__(search[0])
elif len(search) > 1:
raise RuntimeError(f"Unexpected number of nodes named {node} in data")
else:
raise KeyError(f"No node named {node} in this trace")
raise TypeError(
"Expected key to be of type string, OpticalNode, Port, or Connector "
f"but got object of type: {type(node)}"
)
[docs] def get(self, node, default=None):
"""Gets the beam parameter(s) at the specified node / port.
Note that `node` can be an instance of :class:`.OpticalNode`, resulting in
this method returning qx and qy for that specific node, *or* it can be an
object of type :class:`.Port` - in which case a dictionary of both the
input and output node beam parameters are returned.
Parameters
----------
node : :class:`.OpticalNode` or :class:`.Port`
The node or port to access.
default : any, optional; default: None
The value to return if `node` does not exist within the trace data.
"""
try:
return self[node]
except KeyError:
return default
except TypeError:
raise
[docs] def q(self, node):
"""A convenience method for getting the non-astigmatic beam parameter at a node.
.. warning::
This is only intended to be used on nodes which do not exhibit astigmatism. If
qx != qy at the node then this method will raise a ValueError.
To get both qx and qy at a node use either::
qx, qy = trace[node]
or::
qx, qy = trace.get(node)
where ``trace`` is an instance of this class.
Parameters
----------
node : :class:`.OpticalNode`
The node at which to obtain q.
Returns
-------
q : :class:`.BeamParam`
The beam parameter (which is the same in both planes) at the node.
Raises
------
ex : ValueError
If the beam parameters qx != qy at the node.
"""
qx, qy = self._data[node]
if qx != qy:
raise ValueError(
f"Beam parameters qx != qy at node {node.full_name}. Use "
"sub-script operator or BeamTraceSolution.get to obtain both "
"qx and qy in general."
)
return qx
def __str_q(self, q=None, node=None):
if node is not None:
qx, qy = self._data[node]
if q is not None:
if isinstance(q, tuple):
qx, qy = q
else:
qx = qy = q
format_q = lambda q: f"{q.real:.2f} + {q.imag:.2f}j"
if qx != qy:
return f"qx = {format_q(qx)}, qy = {format_q(qy)}"
return f"q = {format_q(qx)}"
def __draw_tree(self, tree, lpad, lines):
branch = "├─"
pipe = "│"
end = "╰─"
dash = "─"
ltree = tree.left
rtree = tree.right
if ltree is not None:
s = branch + dash
if rtree is None:
s = end + dash
pad = " "
else:
s = branch + dash
pad = pipe + " "
lines.append(
lpad
+ s
+ "o"
+ " "
+ ltree.node.full_name
+ self.__start_highlight
+ self.__str_q(node=ltree.node)
+ self.__end_highlight
)
self.__draw_tree(ltree, lpad + pad, lines)
if rtree is not None:
s = end + dash
pad = " "
lines.append(
lpad
+ s
+ "o"
+ " "
+ rtree.node.full_name
+ self.__start_highlight
+ self.__str_q(node=rtree.node)
+ self.__end_highlight
)
self.__draw_tree(rtree, lpad + pad, lines)
def __str__(self):
all_trees = ""
format_g = lambda gx, gy: f"gx = {gx}, gy = {gy}" if gx != gy else f"g = {gx}"
cav_info = (
lambda cav: f"({self.__str_q(q=(cav.qx, cav.qy))}, {format_g(cav.gx, cav.gy)})"
)
nodes = list(self._data.keys())
if not nodes:
return all_trees
if self.__forest is None: # Drawing a full model beam trace
forest = nodes[0]._model.trace_forest.forest
else: # Drawing a custom forest, e.g. from a single cavity trace
forest = self.__forest
for tree in forest:
lines = [
" "
+ "o"
+ " "
+ tree.node.full_name
+ self.__start_highlight
+ self.__str_q(node=tree.node)
+ self.__end_highlight
]
self.__draw_tree(tree, "", lines)
tree_s = "\n ".join(lines)
dep = tree.dependency
if tree.is_source and isinstance(dep, Cavity):
all_trees += (
f"\nInternal trace of cavity: {dep.name} {cav_info(dep)}\n\n"
)
else:
all_trees += f"\nDependency: {dep.name}\n\n"
all_trees += tree_s + "\n"
return all_trees
[docs] def print(self):
"""Draws the trace solution as a forest of beam parameters.
This uses the :class:`.TraceForest` structure associated with the model that
constructed this solution, where each tree is ordered by the trace order of the
relevant call to the beam tracing method.
"""
print(str(self))