from __future__ import annotations
import collections.abc
import logging
import numpy as np
import warnings
from .. import detectors as fd, BeamParam
from ..env import warn
from ..plotting.tools import add_colorbar
from ..utilities.units import get_SI_value
from ..cymath.homs import HGModes
LOGGER = logging.getLogger(__name__)
[docs]def add_arrow(line, position=None, direction="right", size=15, color=None):
"""Add an arrow to a line.
Parameters
----------
line : Line2D object
The line to which the arrow will be added.
position : float or iterable[float], optional
The x-position of the arrow. If None, the mean of xdata is taken.
should be fractional of line x range, 0.5 is in the middle.
direction : {'left', 'right'}, optional
The direction of the arrow. Default is 'right'.
size : int, optional
The size of the arrow in fontsize points. Default is 15.
color : str, optional
The color of the arrow. If None, the line color is taken.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> line, = plt.plot(np.linspace(0, 1), np.linspace(10, -10))
>>> add_arrow(line, [0, 0.5, 1])
Notes
-----
This function adds an arrow to a line plot using the matplotlib library.
References
----------
- https://stackoverflow.com/questions/34017866/arrow-on-a-line-plot
"""
if color is None:
color = line.get_color()
xdata = line.get_xdata()
ydata = line.get_ydata()
if position is None:
position = [xdata.mean()]
else:
position = np.atleast_1d(position)
positions = np.interp(position, np.linspace(0, 1, len(xdata)), xdata)
# find closest index
for position in positions:
start_ind = np.argmin(np.absolute(xdata - position))
if start_ind >= len(xdata) - 1:
start_ind = len(xdata) - 2
if start_ind < 0:
start_ind = 0
if direction == "right":
end_ind = start_ind + 1
else:
end_ind = start_ind - 1
line.axes.annotate(
"",
xytext=(xdata[start_ind], ydata[start_ind]),
xy=(xdata[end_ind], ydata[end_ind]),
arrowprops=dict(arrowstyle="->", color=color),
size=size,
)
[docs]def get_2d_field(modes, amplitudes, qs, x=None, y=None, samples=100, scale=3):
"""Computes the 2D optical field for a given set of modes, modal amplitudes, and
beam parameters.
x and y dimensions can be specified if required, otherwise it
will return an area of `scale` times the spot sizes. When `x` and
`y` are provided `scale` and `samples` will not do anything.
Parameters
----------
modes : array_like
Pairs of modes (n,m). Can be an 2xN array or a
list or tuple of modes.
amplitudes : array_like
Array of complex amplitudes for each mode
qs : BeamParam or Tuple(BeamParam, BeamParam)
Compex beam parameter object for x and y planes.
If singular value give, qx = qy.
x : array_like, optional
x points
y : array_like, optional
y points
samples : int, optional
Number of sample points to use in x and y
scale : float, optional
Number of sample points to use in x and y
Returns
-------
x : double[::1]
x points
y : double[::1]
y points
field : complex[:, ::1]
Complex optical field of size samples x samples
"""
# Try and extract the q values
try:
qx, qy = qs
except TypeError:
qx = qy = qs
HGs = HGModes((qx, qy), np.array(modes).astype(np.int32))
if x is None:
x = np.linspace(-scale * qx.w, scale * qx.w, samples)
if y is None:
y = np.linspace(-scale * qy.w, scale * qy.w, samples)
Unm = HGs.compute_2d_modes(x, y)
return x, y, (Unm.T * np.array(amplitudes)).T.sum(0)
[docs]def z_w0_mismatch_contour(qref, ax=None, N=100, fmt=None, **kwargs):
"""For a given Matplotlib axis this will produce a mode-mismatch contour background.
The axes are assumed to be z in the x and w0 in y. Limits are automatically taken
from the current axes limits.
Parameters
----------
qref : complex, BeamParam
Reference beamparameter to generate contours
with respect to.
ax : Axes, optional
Axes to plot on, if None plt.gca() is called
N : int, optional
Number of samples in each axis to use
**kwargs
Values are passed to plt.contourf function.
"""
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
X, Y = np.meshgrid(
np.linspace(*ax.get_xlim(), N),
np.linspace(*ax.get_ylim(), N),
)
q = BeamParam(z=X, w0=Y)
CS = plt.contour(X[0, :], Y[:, 0], 100 * BeamParam.mismatch(q, qref), **kwargs)
plt.clabel(CS, CS.levels, inline=True, fmt=fmt, fontsize=10)
plt.colorbar(label="Mismatch [%]")
plt.xlabel("z [m]")
plt.ylabel("w0 [m]")
[docs]def z_w0_mismatch_contourf(qref, ax=None, N=100, **kwargs):
"""For a given Matplotlib axis this will produce a mode-mismatch filled contour
background. The axes are assumed to be z in the x and w0 in y. Limits are
automatically taken from the current axes limits.
Parameters
----------
qref : complex, BeamParam
Reference beamparameter to generate contours
with respect to.
ax : Axes, optional
Axes to plot on, if None plt.gca() is called
N : int, optional
Number of samples in each axis to use
**kwargs
Values are passed to plt.contourf function.
"""
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
X, Y = np.meshgrid(
np.linspace(*ax.get_xlim(), N),
np.linspace(*ax.get_ylim(), N),
)
q = BeamParam(z=X, w0=Y)
plt.contourf(X[0, :], Y[:, 0], 100 * BeamParam.mismatch(q, qref), **kwargs)
plt.colorbar(label="Mismatch [%]")
plt.xlabel("z [m]")
plt.ylabel("w0 [m]")
[docs]def plot_field(
modes,
amplitudes,
qs,
*,
x=None,
y=None,
samples=100,
scale=3,
ax=None,
colorbar=True,
**kwargs,
):
"""Plots a 2D optical field for a given set of modes, modal amplitudes, and beam
parameters.
x and y dimensions can be specified if required, otherwise it
will return an area of `scale` times the spot sizes. When `x` and
`y` are provided `scale` and `samples` will not do anything.
Parameters
----------
modes : array_like
Pairs of modes (n,m). Can be an 2xN array or a
list or tuple of modes.
amplitudes : array_like
Array of complex amplitudes for each mode
qs : BeamParam or Tuple(BeamParam, BeamParam)
Compex beam parameter object for x and y planes.
If singular value give, qx = qy.
x, y : ndarray, optional
Specify x and y coordinates to plot beam
samples : int, optional
Number of sample points to use in x and y
scale : float, optional
Number of sample points to use in x and y
ax : Axis, optional
A Matplotlib axis to put the image on. If None,
a new figure will be made.
colorbar : bool
When True the colorbar will be added
**kwargs
Extra keyword arguments will be passed to the
pcolormesh plotting function.
"""
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots(1, 1)
if "shading" not in kwargs:
kwargs["shading"] = "auto"
x, y, E = get_2d_field(
modes, amplitudes, qs, x=x, y=y, samples=samples, scale=scale
)
p = ax.pcolormesh(x, y, (E * E.conj()).real, **kwargs)
p.set_rasterized(True)
ax.set_aspect("equal")
if colorbar:
plt.colorbar(p, ax=ax, label=r"Intensity [$\mathrm{W}\mathrm{m}^{-2}$]")
[docs]def bode(
f, *Y, axs=None, return_axes=True, figsize=(6, 6), db=True, wrap=True, **kwargs
):
"""Create a Bode plot for a complex array.
Parameters
----------
f : array_like
Frequencies
*Y : array_like
Complex valued transfer functions evaluated at frequencies `f`
axs : Axes, optional
Axes to use to plot transfer functions on. Magnitude plotted on axs[0]
and phase on axs[1].
db : bool, optional
Plot magnitude in dB
wrap : bool, optional
Wrap phase
figsize : tuple
Figure size
**kwargs
Additional arguments are passed to the semilog calls
Examples
--------
>>> axs = bode(f, CLG, label='CLG')
>>> bode(f, CHR, axs=axs, label='CHR')
"""
import matplotlib.pyplot as plt
if axs is None:
fig, axs = plt.subplots(2, 1, sharex=True, figsize=figsize)
if db:
axs[0].set_ylabel("Magnitude [dB]")
else:
axs[0].set_ylabel("Magnitude")
axs[1].set_xlabel("Frequency [Hz]")
axs[1].set_ylabel("Phase [Deg]")
with warnings.catch_warnings():
# Ignore warnings when y=0 in log10
warnings.filterwarnings("ignore", category=RuntimeWarning)
for y in Y:
if db:
mag = 20.0 * np.log10(abs(y))
else:
mag = abs(y)
phase = np.arctan2(y.imag, y.real)
if not wrap:
phase = np.unwrap(phase)
phase *= 180.0 / np.pi
if db is True:
axs[0].semilogx(f, mag, **kwargs)
else:
axs[0].loglog(f, mag, **kwargs)
axs[1].semilogx(f, phase, **kwargs)
if "label" in kwargs:
axs[0].legend()
axs[1].legend()
if return_axes:
return axs
[docs]def ws_phase_space(
W,
S,
OL,
cmap="bone",
levels=None,
wscale="mm",
sscale="m",
contour_kwargs=None,
clabel_kwargs=None,
show=True,
fig=None,
ax=None,
):
"""Plots the overlap contours for WS phase space data.
The return values of :func:`.ws_overlap_grid` correspond to the first three
arguments of this function.
Parameters
----------
W : :class:`numpy.ndarray`
The W space (as a 2D grid).
S : :class:`numpy.ndarray`
The S space (as a 2D grid).
OL : :class:`numpy.ndarray`
The overlap as a function of the WS phase space (as a 2D grid).
cmap : str or colormap, optional; default: "bone"
A matplotlib colormap, or its name.
levels : list, optional; default: None
List of contour levels to pass to contour plotting explicitly.
wscale : str, optional; default: "mm"
Units for W-axis (i.e. beam size units).
sscale : str, optional; default: "m"
Reciprocal units for S-axis (i.e. defocus units).
contour_kwargs : dict, optional
Dictionary of keyword arguments to pass to matplotlib contour function. If not
specified then the following defaults are used:
- "colors": "k"
- "linestyles": "--"
- "linewidths": 0.5
clabel_kwargs : dict, optional
Dictionary of keyword arguments to pass to matplotlib clabel function. If not
specified then the following defaults are used:
- "colors": same as `contour_kwargs`
- "inline": True
show : bool, optional; default: True
Whether to show the figure immediately.
fig : :class:`~matplotlib.figure.Figure`, optional, default: None
The figure object to use. If not specified a new figure will be drawn.
ax : :class:`~matplotlib.axes.Axes`, optional, default: None
The axes to use. If not specified the first pair will be used, or created.
Ignored if `fig` is None.
Returns
-------
fig : :class:`~matplotlib.figure.Figure`
Handle to the matplotlib Figure.
ax : :class:`~matplotlib.axes.Axes`
Handle to the matplotlib Axis.
See Also
--------
:class:`~finesse.gaussian.ws_overlap_grid`
"""
import matplotlib.pyplot as plt
if fig is None:
fig = plt.figure()
if ax is not None:
warn("Ignoring axes specified without figure")
ax = None
if ax is None:
if len(fig.axes) == 0:
ax = fig.add_subplot()
else:
warn("Axes not specified; using first pair.")
ax = fig.axes[0]
if contour_kwargs is None:
contour_kwargs = {}
if clabel_kwargs is None:
clabel_kwargs = {}
# Set some sensible defaults for the overlap contour line properties
contour_kwargs.setdefault("colors", "k")
contour_kwargs.setdefault("linestyles", "--")
contour_kwargs.setdefault("linewidths", 0.5)
# And some defaults for the overlap contour label properties
clabel_kwargs.setdefault("inline", True)
clabel_kwargs.setdefault("colors", contour_kwargs["colors"])
CS = ax.contourf(W, S, OL, cmap=plt.colormaps.get_cmap(cmap), levels=levels)
CS2 = ax.contour(W, S, OL, levels=CS.levels, **contour_kwargs)
ax.clabel(CS2, **clabel_kwargs)
if len(wscale) == 2:
wsv = get_SI_value(wscale[0])
ax.set_xticklabels(f"{(x / wsv):.2f}" for x in ax.get_xticks())
if len(sscale) == 2:
ssv = get_SI_value(sscale[0])
ax.set_yticklabels(f"{(y / ssv):.2f}" for y in ax.get_yticks())
ax.set_xlabel(f"Gaussian mode size $W$ [{wscale}]")
ax.set_ylabel(f"Gaussian defocus $S$ [1/{sscale}]")
if show:
plt.show()
return fig, ax
[docs]class Plotter:
"""Handler for plotting outputs from a simulation."""
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.animation as animation
[docs] def __init__(self, solution):
self.out = solution
# figure size scaling and layout
self.scale = 1
self.tight_layout = True
# animation attributes
self.repeat = True
self.repeat_delay = None
self.interval = 50
self.blit = True
def __do_scaling_and_layout(self, figures):
done = set()
for figs_t in figures.values():
if isinstance(figs_t, dict):
figs = list(figs_t.values())
if figs and isinstance(figs[0], list):
figs = figs[0]
elif isinstance(figs_t, list):
figs = figs_t
else:
figs = [figs_t]
for fig in figs:
if fig in done:
continue
fig.set_size_inches(self.scale * fig.get_size_inches())
if self.tight_layout:
fig.tight_layout()
done.add(fig)
[docs] def parameter_axis_label(self, param, axis="x", ax=None):
info = self.out.axis_info[param]
if ax is not None:
if axis == "x":
func = ax.set_xlabel
else:
func = ax.set_ylabel
else:
if axis == "x":
func = Plotter.plt.xlabel
else:
func = Plotter.plt.ylabel
label = f"{info['name']}"
if info["unit"]:
label += f" [{info['unit']}]"
func(label)
[docs] def output_axis_label(self, obj, ax=None):
info = self.out.trace_info[obj]
if ax is not None:
func = ax.set_ylabel
else:
func = Plotter.plt.ylabel
if info["label"] is None:
label = ""
warn(
f"Detector {repr(info['name'])} has no label, unable to set output "
f"axis label for this detector."
)
label = f"{info['label']}"
if info["unit"]:
label += f" [{info['unit']}]"
func(label)
[docs] @staticmethod
def choose_plot_func(logx, logy, magnitude_axis=None):
if magnitude_axis is not None:
obj = magnitude_axis
else:
obj = Plotter.plt
if logx and logy:
return obj.loglog
if logx:
return obj.semilogx
if logy:
return obj.semilogy
return obj.plot
[docs] @staticmethod
def select_detector_cmap(cmaps, det):
det_type = type(det)
if isinstance(cmaps, dict):
if det in cmaps:
cmap = cmaps[det]
elif det_type in cmaps:
cmap = cmaps[det_type]
else:
LOGGER.info(
"No entry for %s or %s in specified cmap dictionary, "
"using default colormap",
det,
det_type,
)
cmap = Plotter.plt.get_cmap()
else:
cmap = cmaps
return cmap
[docs] @staticmethod
def make_text_handle(
text_former, units, x, y, index=0, color="white", fig=None, ax=None
):
units_txt = f"\n[{units}]" if units else ""
if ax is None:
if fig is None:
raise RuntimeError()
txt_func = Plotter.plt.text
transform = fig.axes[0].transAxes
else:
txt_func = ax.text
transform = ax.transAxes
return txt_func(
x,
y,
text_former(index) + units_txt,
ha="center",
va="center",
transform=transform,
color=color,
)
[docs] def make_images(
self,
fig,
extent,
z,
cmap,
det,
log,
anim_axis,
aspect="auto",
cbar_label=None,
transpose=False,
):
x, p = anim_axis
norm = None
if log:
norm = Plotter.colors.LogNorm(z.min(), z.max())
if transpose:
z0 = z[0].T
else:
z0 = z[0]
initial_im = Plotter.plt.imshow(
z0,
norm=norm,
extent=extent,
cmap=cmap,
aspect=aspect,
animated=True,
)
if cbar_label is None:
cbar_label = f"{self.out.trace_info[det]['label']}"
if self.out.trace_info[det]["unit"]:
cbar_label += f" [{self.out.trace_info[det]['unit']}]"
cbar_label += f" ({det})"
add_colorbar(initial_im, label=cbar_label)
def form_txt(idx):
cname = self.out.axis_info[p]["component"]
name = self.out.axis_info[p]["name"]
return f"{cname} {name} = {x[idx]:.3g}"
txt_handle = Plotter.make_text_handle(
form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, fig=fig
)
images = [[initial_im, txt_handle]]
for i in np.arange(1, x.size):
if transpose:
zi = z[i].T
else:
zi = z[i]
im = Plotter.plt.imshow(
zi,
norm=norm,
extent=extent,
cmap=cmap,
aspect=aspect,
animated=True,
)
txt_handle = Plotter.make_text_handle(
form_txt,
self.out.axis_info[p]["unit"],
x=0.8,
y=0.9,
index=i,
fig=fig,
)
images.append([im, txt_handle])
return images
[docs] def make_amp_phase_images(
self,
ax1,
ax2,
extent,
z1,
z2,
cmap,
degrees,
det,
log,
anim_axis,
aspect="auto",
transpose=False,
):
x, p = anim_axis
norm = None
if log:
norm = Plotter.colors.LogNorm(z1.min(), z1.max())
if transpose:
z10 = z1[0].T
z20 = z2[0].T
else:
z10 = z1[0]
z20 = z2[0]
initial_amp_im = ax1.imshow(
z10,
norm=norm,
extent=extent,
cmap=cmap,
aspect=aspect,
animated=True,
)
add_colorbar(initial_amp_im, label=r"Amplitude [$\sqrt{{W}}$" + f" ({det})")
initial_phase_im = ax2.imshow(
z20,
extent=extent,
cmap=cmap,
aspect=aspect,
animated=True,
)
add_colorbar(
initial_phase_im,
label=f"Phase [{'deg' if degrees else 'rad'}] ({det})",
)
def form_txt(idx):
cname = self.out.axis_info[p]["component"]
name = self.out.axis_info[p]["name"]
return f"{cname} {name} = {x[idx]:.3g}"
amp_txt_handle = Plotter.make_text_handle(
form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, ax=ax1
)
phase_txt_handle = Plotter.make_text_handle(
form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, ax=ax2
)
images = [[initial_amp_im, initial_phase_im, amp_txt_handle, phase_txt_handle]]
for i in np.arange(1, x.size):
if transpose:
z1i = z1[i].T
z2i = z2[i].T
else:
z1i = z1[i]
z2i = z2[i]
amp_im = ax1.imshow(
z1i,
norm=norm,
extent=extent,
cmap=cmap,
aspect=aspect,
animated=True,
)
phase_im = ax2.imshow(
z2i,
extent=extent,
cmap=cmap,
aspect=aspect,
animated=True,
)
amp_txt_handle = Plotter.make_text_handle(
form_txt,
self.out.axis_info[p]["unit"],
x=0.8,
y=0.9,
index=i,
ax=ax1,
)
phase_txt_handle = Plotter.make_text_handle(
form_txt,
self.out.axis_info[p]["unit"],
x=0.8,
y=0.9,
index=i,
ax=ax2,
)
images.append([amp_im, phase_im, amp_txt_handle, phase_txt_handle])
return images
@staticmethod
def _set_fig_at_detname(figures: dict, dets: collections.abc.Iterable | str, fig):
if isinstance(dets, str) or not isinstance(dets, collections.abc.Iterable):
dets = [dets]
figures.update(dict.fromkeys(dets, fig))
def __handle_beam_property_plotting(
self, bp_detector_map, cmaps, figures, animations, logx, logy, log, degrees
):
if bp_detector_map:
sub_figs = figures[fd.BeamPropertyDetector] = {}
for det_prop, dets in bp_detector_map.items():
if det_prop == fd.BeamProperty.Q:
continue
if self.out.axes == 1:
self.__plot_1D(det_prop, dets, logx, logy, degrees, sub_figs, figures)
elif self.out.axes == 2:
self.__plot_2D(det_prop, dets, log, degrees, cmaps, sub_figs, figures)
elif self.out.axes == 3:
self.__plot_2D_animated(
det_prop, dets, log, degrees, cmaps, sub_figs, animations, figures
)
def __handle_cavity_property_plotting(
self, cp_detector_map, cmaps, figures, animations, logx, logy, log, degrees
):
if cp_detector_map:
sub_figs = figures[fd.CavityPropertyDetector] = {}
for det_prop, dets in cp_detector_map.items():
if det_prop == fd.CavityProperty.EIGENMODE:
continue
if self.out.axes == 1:
self.__plot_1D(det_prop, dets, logx, logy, degrees, sub_figs, figures)
elif self.out.axes == 2:
self.__plot_2D(det_prop, dets, log, degrees, cmaps, sub_figs, figures)
elif self.out.axes == 3:
self.__plot_2D_animated(
det_prop, dets, log, degrees, cmaps, sub_figs, animations, figures
)
def __handle_detector_plotting(
self,
detector_type_map,
cmaps,
figures,
animations,
logx,
logy,
log,
degrees,
):
for det_type, dets in detector_type_map.items():
if det_type == fd.CCD:
self.__plot_CCDs(dets, log, cmaps, figures, animations)
elif det_type == fd.FieldCamera:
self.__plot_field_cameras(
dets, log, degrees, cmaps, figures, animations
)
elif det_type == fd.CCDScanLine:
self.__plot_ccd_scan_lines(dets, log, cmaps, figures, animations)
elif det_type == fd.FieldScanLine:
self.__plot_field_scan_lines(
dets, log, degrees, cmaps, figures, animations
)
else:
if not self.out.axes:
warn(
f"No x-axes have been defined, unable to plot the "
f"outputs of any detectors of type {repr(det_type)}"
)
continue
if self.out.axes == 1:
self.__plot_1D(det_type, dets, logx, logy, degrees, figures)
elif self.out.axes == 2:
self.__plot_2D(det_type, dets, log, degrees, cmaps, figures)
elif self.out.axes == 3:
self.__plot_2D_animated(
det_type, dets, log, degrees, cmaps, figures, animations
)
else:
LOGGER.error(
"Unable to produce plots of %d-dimensional data", self.out.axes
)
def __plot_1D(self, det_type, dets, logx, logy, degrees, figures, allfigs=None):
fig = figures.get(det_type)
if fig is None:
fig = Plotter.plt.figure()
else:
Plotter.plt.figure(fig.number)
mag_and_phase = (
allfigs is None
and issubclass(det_type, fd.Detector)
and any(self.out.trace_info[det]["dtype"] == np.complex128 for det in dets)
)
if mag_and_phase:
mag_ax = fig.add_subplot(211)
phase_ax = fig.add_subplot(212, sharex=mag_ax)
else:
mag_ax = None
plot_func = Plotter.choose_plot_func(logx, logy, mag_ax)
for det in dets:
data = self.out[det]
if mag_and_phase:
amplitude = np.abs(data)
plot_func(self.out.x1, amplitude, label=det + " (abs)")
mag_ax.set_ylabel(r"Amplitude [$\sqrt{W}$]")
mag_ax.legend()
phase = np.angle(data, degrees)
phase_ax.plot(self.out.x1, phase, label=det + " (phase)")
phase_ax.set_ylabel(f"Phase [{'deg' if degrees else 'rad'}]")
else:
plot_func(self.out.x1, data, label=det)
if not mag_and_phase and dets:
self.output_axis_label(dets[0])
Plotter.plt.legend()
self.parameter_axis_label(self.out.p1)
figures[det_type] = fig
if allfigs is None:
Plotter._set_fig_at_detname(figures, dets, fig)
else:
Plotter._set_fig_at_detname(allfigs, dets, fig)
def __plot_2D(self, det_type, dets, log, degrees, cmaps, figures, allfigs=None):
x1 = self.out.x1
x2 = self.out.x2
extent = [x1.min(), x1.max(), x2.min(), x2.max()]
for det in dets:
fig = Plotter.plt.figure()
data = self.out[det].T
cmap = Plotter.select_detector_cmap(cmaps, det)
mag_and_phase = self.out.trace_info[det]["dtype"] == np.complex128
if mag_and_phase:
mag_ax = fig.add_subplot(211)
phase_ax = fig.add_subplot(212)
amplitude = np.abs(data)
norm = None
if log:
norm = Plotter.colors.LogNorm(amplitude.min(), amplitude.max())
mag_im = mag_ax.imshow(
amplitude,
extent=extent,
norm=norm,
cmap=cmap,
aspect="auto",
)
add_colorbar(mag_im, label=r"Amplitude [$\sqrt{{W}}$]" + f" ({det})")
phase = np.angle(data, degrees)
phase_im = phase_ax.imshow(
phase,
extent=extent,
cmap=cmap,
aspect="auto",
)
add_colorbar(
phase_im,
label=f"Phase [{'deg' if degrees else 'rad'}] ({det})",
)
for ax in (mag_ax, phase_ax):
self.parameter_axis_label(self.out.p1, ax=ax)
self.parameter_axis_label(self.out.p2, axis="y", ax=ax)
else:
norm = None
if log:
norm = Plotter.colors.LogNorm(data.min(), data.max())
im = Plotter.plt.imshow(
data,
extent=extent,
norm=norm,
cmap=cmap,
aspect="auto",
)
add_colorbar(
im,
label=f"{self.out.trace_info[det]['label']} [{self.out.trace_info[det]['unit']}] ({det})",
)
self.parameter_axis_label(self.out.p1)
self.parameter_axis_label(self.out.p2, axis="y")
if det_type in figures:
figures[det_type].append(fig)
else:
figures[det_type] = [fig]
if allfigs is None:
Plotter._set_fig_at_detname(figures, det, fig)
else:
Plotter._set_fig_at_detname(allfigs, det, fig)
def __plot_2D_animated(
self,
det_type,
dets,
log,
degrees,
cmaps,
figures,
animations,
allfigs=None,
):
x1 = self.out.x1
x2 = self.out.x2
extent = [x1.min(), x1.max(), x2.min(), x2.max()]
for det in dets:
fig = Plotter.plt.figure()
data = self.out[det]
cmap = Plotter.select_detector_cmap(cmaps, det)
mag_and_phase = self.out.trace_info[det]["dtype"] == np.complex128
if mag_and_phase:
mag_ax = fig.add_subplot(211)
phase_ax = fig.add_subplot(212)
amplitude = np.abs(data)
phase = np.angle(data, degrees)
images = self.make_amp_phase_images(
mag_ax,
phase_ax,
extent,
amplitude,
phase,
cmap,
degrees,
det,
log,
(self.out.x3, self.out.p3),
transpose=True,
)
for ax in (mag_ax, phase_ax):
self.parameter_axis_label(self.out.p1, ax=ax)
self.parameter_axis_label(self.out.p2, axis="y", ax=ax)
else:
images = self.make_images(
fig,
extent,
data,
cmap,
det,
log,
(self.out.x3, self.out.p3),
transpose=True,
)
self.parameter_axis_label(self.out.p1)
self.parameter_axis_label(self.out.p2, axis="y")
animations[det] = Plotter.animation.ArtistAnimation(
fig,
images,
interval=self.interval,
repeat=self.repeat,
repeat_delay=self.repeat_delay,
blit=self.blit,
)
if det_type in figures:
figures[det_type].append(fig)
else:
figures[det_type] = [fig]
if allfigs is None:
Plotter._set_fig_at_detname(figures, det, fig)
else:
Plotter._set_fig_at_detname(allfigs, det, fig)
def __plot_CCDs(self, dets, log, cmaps, figures, animations):
if self.out.axes > 1:
warn("Skipping CCD plots as multiple axes have been defined")
return
for det in dets:
fig = Plotter.plt.figure()
data = self.out[det]
norm = None
if log:
norm = Plotter.colors.LogNorm(data.min(), data.max())
w0_scaled = self.out.trace_info[det]["w0_scaled"]
cmap = Plotter.select_detector_cmap(cmaps, det)
extent = [
*self.out.trace_info[det]["xlim"],
*self.out.trace_info[det]["ylim"],
]
cb_label = r"Intensity [W m$^{-2}$ px]" + f" ({det})"
if not self.out.axes: # single image
im = Plotter.plt.imshow(
data.T,
norm=norm,
extent=extent,
cmap=cmap,
aspect="equal",
)
add_colorbar(im, label=cb_label)
else:
images = self.make_images(
fig,
extent,
data,
cmap,
det,
log,
(self.out.x1, self.out.p1),
aspect="equal",
cbar_label=cb_label,
transpose=True,
)
animations[det] = Plotter.animation.ArtistAnimation(
fig,
images,
interval=self.interval,
repeat=self.repeat,
repeat_delay=self.repeat_delay,
blit=self.blit,
)
Plotter.plt.xlabel(r"$\mathrm{x}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]")
Plotter.plt.ylabel(r"$\mathrm{y}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]")
if fd.CCD in figures:
figures[fd.CCD].append(fig)
else:
figures[fd.CCD] = [fig]
Plotter._set_fig_at_detname(figures, det, fig)
def __plot_field_cameras(self, dets, log, degrees, cmaps, figures, animations):
if self.out.axes > 1:
warn("Skipping ComplexCamera plots as multiple axes have been defined")
return
for det in dets:
fig = Plotter.plt.figure()
data = self.out[det]
norm = None
if log:
norm = Plotter.colors.LogNorm(data.min(), data.max())
w0_scaled = self.out.trace_info[det]["w0_scaled"]
cmap = Plotter.select_detector_cmap(cmaps, det)
extent = [
*self.out.trace_info[det]["xlim"],
*self.out.trace_info[det]["ylim"],
]
mag_ax = fig.add_subplot(211)
phase_ax = fig.add_subplot(212)
amplitude = np.abs(data)
phase = np.angle(data, degrees)
if not self.out.axes: # single image
mag_im = mag_ax.imshow(
amplitude.T,
norm=norm,
extent=extent,
cmap=cmap,
aspect="equal",
)
add_colorbar(mag_im, label=det + r" Amplitude [$\sqrt{W}$ px]")
phase_im = phase_ax.imshow(
phase.T,
extent=extent,
cmap=cmap,
aspect="equal",
)
add_colorbar(
phase_im, label=det + f" Phase [{'deg' if degrees else 'rad'}]"
)
else:
images = self.make_amp_phase_images(
mag_ax,
phase_ax,
extent,
amplitude,
phase,
cmap,
degrees,
det,
log,
(self.out.x1, self.out.p1),
aspect="equal",
transpose=True,
)
animations[det] = Plotter.animation.ArtistAnimation(
fig,
images,
interval=self.interval,
repeat=self.repeat,
repeat_delay=self.repeat_delay,
blit=self.blit,
)
for ax in (mag_ax, phase_ax):
ax.set_xlabel(r"$\mathrm{x}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]")
ax.set_ylabel(r"$\mathrm{y}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]")
if fd.FieldCamera in figures:
figures[fd.FieldCamera].append(fig)
else:
figures[fd.FieldCamera] = [fig]
Plotter._set_fig_at_detname(figures, det, fig)
def __plot_ccd_scan_lines(
self,
dets,
log,
cmap,
figures,
animations,
):
if self.out.axes > 2:
warn("Skipping CCDScanLine plots as more than two axes have been defined")
return
if not self.out.axes:
fig = Plotter.plt.figure()
for det in dets:
if self.out.axes:
fig = Plotter.plt.figure()
data = self.out[det]
if self.out.trace_info[det]["direction"] == "x":
x = self.out.trace_info[det]["xdata"]
else:
x = self.out.trace_info[det]["ydata"]
w0_scaled = self.out.trace_info[det]["w0_scaled"]
if not self.out.axes:
plot_func = Plotter.choose_plot_func(log, log)
plot_func(x, data, label=det)
else:
extent = [x.min(), x.max(), self.out.x1.min(), self.out.x1.max()]
if self.out.axes == 1:
norm = None
if log:
norm = Plotter.colors.LogNorm(data.min(), data.max())
im = Plotter.plt.imshow(
data.T,
extent=extent,
norm=norm,
cmap=cmap,
aspect="auto",
)
add_colorbar(
im,
label=f"{self.out.trace_info[det]['label']} [{self.out.trace_info[det]['unit']}] ({det})",
)
else:
images = self.make_images(
fig,
extent,
data,
cmap,
det,
log,
(self.out.x2, self.out.p2),
transpose=True,
)
animations[det] = Plotter.animation.ArtistAnimation(
fig,
images,
interval=self.interval,
repeat=self.repeat,
repeat_delay=self.repeat_delay,
blit=self.blit,
)
self.parameter_axis_label(self.out.p1, axis="y")
if fd.FieldScanLine in figures:
figures[fd.FieldScanLine].append(fig)
else:
figures[fd.FieldScanLine] = [fig]
Plotter._set_fig_at_detname(figures, det, fig)
Plotter.plt.xlabel(
r"$\mathrm{"
+ self.out.trace_info[det]["direction"]
+ r"}$ [$\mathrm{w}_0$]"
if w0_scaled
else "[m]"
)
if not self.out.axes:
self.output_axis_label(dets[0])
Plotter.plt.legend()
figures[fd.FieldScanLine] = fig
Plotter._set_fig_at_detname(figures, dets, fig)
def __plot_field_scan_lines(
self,
dets,
log,
degrees,
cmap,
figures,
animations,
):
if self.out.axes > 2:
warn("Skipping FieldScanLine plots as more than two axes have been defined")
return
if not self.out.axes:
fig = Plotter.plt.figure()
for det in dets:
if self.out.axes:
fig = Plotter.plt.figure()
mag_ax = fig.add_subplot(211)
phase_ax = fig.add_subplot(212)
if self.out.trace_info[det]["direction"] == "x":
x = self.out.trace_info[det]["xdata"]
else:
x = self.out.trace_info[det]["ydata"]
w0_scaled = self.out.trace_info[det]["w0_scaled"]
amplitude = np.abs(self.out[det])
phase = np.angle(self.out[det], degrees)
if not self.out.axes:
plot_func = Plotter.choose_plot_func(log, log, mag_ax)
plot_func(x, amplitude, label=det)
mag_ax.set_ylabel(r"Amplitude [$\sqrt{W}$ px]")
mag_ax.legend()
phase_ax.plot(x, phase, label=det)
phase_ax.set_ylabel(f"Phase [{'deg' if degrees else 'rad'}]")
phase_ax.legend()
else:
extent = [x.min(), x.max(), self.out.x1.min(), self.out.x1.max()]
if self.out.axes == 1:
norm = None
if log:
norm = Plotter.colors.LogNorm(amplitude.min(), amplitude.max())
mag_im = mag_ax.imshow(
amplitude.T,
norm=norm,
extent=extent,
cmap=cmap,
aspect="auto",
)
add_colorbar(mag_im, label=r"Ampltide [$\sqrt{W}$ px]")
phase_im = phase_ax.imshow(
phase.T,
extent=extent,
cmap=cmap,
aspect="auto",
)
add_colorbar(
phase_im, label=f"Phase [{'deg' if degrees else 'rad'}]"
)
else:
images = self.make_amp_phase_images(
mag_ax,
phase_ax,
extent,
amplitude,
phase,
cmap,
degrees,
det,
log,
(self.out.x2, self.out.p2),
aspect="equal",
transpose=True,
)
animations[det] = Plotter.animation.ArtistAnimation(
fig,
images,
interval=self.interval,
repeat=self.repeat,
repeat_delay=self.repeat_delay,
blit=self.blit,
)
for ax in (mag_ax, phase_ax):
self.parameter_axis_label(self.out.p1, axis="y", ax=ax)
if fd.FieldScanLine in figures:
figures[fd.FieldScanLine].append(fig)
else:
figures[fd.FieldScanLine] = [fig]
Plotter._set_fig_at_detname(figures, det, fig)
for ax in (mag_ax, phase_ax):
ax.set_xlabel(
r"$\mathrm{"
+ self.out.trace_info[det]["direction"]
+ r"}$ "
+ r"[$\mathrm{w}_0$]"
if w0_scaled
else "[m]"
)
if not self.out.axes:
figures[fd.FieldScanLine] = fig
Plotter._set_fig_at_detname(figures, dets, fig)
[docs] def plot(
self,
*detectors,
log=False,
logx=None,
logy=None,
degrees=True,
cmap=None,
show=True,
separate=True,
_test_fig_handles=None,
):
r"""Plots the outputs from the specified `detectors` of a given solution `out`, or all
detectors in the executed model if `detectors` is `None`.
Detectors are sorted by their type and the outputs of each are plotted on their own figure
accordingly - i.e. all amplitude detector outputs are plotted on one figure, all power
detector outputs on another figure etc.
.. note::
It is recommended to use this function with :func:`finesse.plotting.tools.init`. This
then means that all figures produced by this function will use matplotlib rcParams
corresponding to the style selected.
For example::
import finesse
finesse.plotting.init()
model = finesse.parse(\"""
l L0 P=1
s s0 L0.p1 ITM.p1
m ITM R=0.99 T=0.01 Rc=inf
s CAV ITM.p2 ETM.p1 L=1
m ETM R=0.99 T=0.01 Rc=10
modes maxtem=4
gauss L0.p1.o q=(-0.4+2j)
cav FP ITM.p2.o ITM.p2.i
ad ad00 ETM.p1.i f=L0.f n=0 m=0
ad ad02 ETM.p1.i f=L0.f n=0 m=2
pd C ETM.p1.i
\
""")
model.run("xaxis(L0.f, (-100M), 100M, 1000, lin)").plot(logy=True, figsize_scale=2)
will produce two figures (one for the power-detector output and another for the
amplitude detectors) which use rcParams from the `default` style-sheet. Using
`figsize_scale` here then scales these figures whilst keeping the proportions
defined in this style-sheet constant.
.. rubric:: Multi-dimensional scan plotting behaviour
If multiple parameters have been scanned in the underlying model associated
with this solution object, then the form of the resulting plots produced here
will depend on a number of options:
- If two parameters have been scanned then all non-CCD detector ouputs will be plotted
on separate image plot figures. All CCD plots will be ignored.
- If a single parameter has been scanned and `index` is not specified then all CCD detector
outputs will be plotted on separate animated figures. Or if `index` is specified, then
all CCD detector outputs will be plotted on separate image plot figures *at the
specified index of the scanned axis*.
Parameters
----------
detectors : sequence or str or type or :class:`.Detector`, optional
An iterable (or singular) of strings (corresponding to detector names),
:class:`.Detector` instances or detector types. Defaults to `None` so that all detector
outputs are plotted.
log : bool, optional
Use log-log scale. Also applies to image plots so that colours are normalised
on a log-scale between limits of image data. Defaults to `False`.
logx : bool, optional
Use log-scale on x-axis if appropriate, defaults to the
value of `log`.
logy : bool, optional
Use log-scale on y-axis if appropriate, defaults to the
value of `log`.
degrees : bool, optional
Plots angle and phase outputs in degrees, defaults to `True`.
show : bool, optional
Shows all the produced figures if true, defaults to `True`.
separate : bool, optional
Plots the output of different detector types on different
axes if true, defaults to `True`.
Returns
-------
figures : dict
A dictionary mapping `type(detector)` and detector names to corresponding
:class:`~matplotlib.figure.Figure` objects. Note that some keys, i.e. those of each
`type(detector)` and the names of the detectors of that type, share the same values.
animations : dict
A dictionary of `detector.name : animation` mappings.
"""
# handle case where detectors are given as some iterable list/tuple
if (
len(detectors) == 1
and isinstance(detectors[0], collections.abc.Iterable)
and not isinstance(detectors[0], str)
):
detectors = detectors[0]
if logx is None:
logx = log
if logy is None:
logy = log
# Convert from any objects to names
if len(detectors) == 0:
detectors = self.out.detectors
else:
detectors = tuple(x if isinstance(x, str) else x.name for x in detectors)
detector_type_map = {}
bp_detector_map = {}
cp_detector_map = {}
plot_infos = tuple(self.out.trace_info[det] for det in detectors)
for info in plot_infos:
if info["detector_type"] is fd.BeamPropertyDetector:
if info["detecting"] in bp_detector_map:
bp_detector_map[info["detecting"]].append(info["name"])
else:
bp_detector_map[info["detecting"]] = [info["name"]]
elif info["detector_type"] is fd.CavityPropertyDetector:
if info["detecting"] in cp_detector_map:
cp_detector_map[info["detecting"]].append(info["name"])
else:
cp_detector_map[info["detecting"]] = [info["name"]]
else:
if separate:
key = info["detector_type"]
else:
key = type(fd.Detector)
if key in detector_type_map:
detector_type_map[key].append(info["name"])
else:
detector_type_map[key] = [info["name"]]
if cmap is None:
cmap = Plotter.plt.get_cmap()
figures = _test_fig_handles or {}
animations = {}
self.__handle_beam_property_plotting(
bp_detector_map,
cmap,
figures,
animations,
logx,
logy,
log,
degrees,
)
self.__handle_cavity_property_plotting(
cp_detector_map,
cmap,
figures,
animations,
logx,
logy,
log,
degrees,
)
self.__handle_detector_plotting(
detector_type_map,
cmap,
figures,
animations,
logx,
logy,
log,
degrees,
)
self.__do_scaling_and_layout(figures)
if show:
Plotter.plt.show()
if not animations:
return figures
return figures, animations
[docs]def rescale_axes_SI_units(
*, xaxis=None, fmt_xaxis="{:g}", yaxis=None, fmt_yaxis="{:g}", ax=None
):
"""Rescales either the x or y axes on a matplotlib axis object by some SI scale
factor. This works by just changing the major tick labels rather than rescaling any
data used so can be used after any plot has been made.
Parameters
----------
xaxis, yaxis : str
An SI scaling character, see `finesse.utilities.units.SI_LABEL`
fmt_xaxis, fmt_yaxis : str
Python format string for setting the format of the ticks
Examples
--------
Recsale a plot into units of milli on the xaxis and kilo on the y
with 2 decimal places on x and 3 on y:
rescale_axes_SI_units(
xaxis='m', fmt_xaxis="{:.2f}",
yaxis='k', fmt_yaxis="{:.3f}"
)
"""
import matplotlib.pyplot as plt
from matplotlib import ticker
from finesse.utilities.units import get_SI_value
ax = ax or plt.gca()
if xaxis is not None:
xscale = get_SI_value(xaxis)
ax.xaxis.set_major_formatter(
ticker.FuncFormatter(lambda x, _: fmt_xaxis.format(x / xscale))
)
if yaxis is not None:
yscale = get_SI_value(yaxis)
ax.yaxis.set_major_formatter(
ticker.FuncFormatter(lambda y, _: fmt_yaxis.format(y / yscale))
)