Source code for finesse.plotting.plot

from __future__ import annotations

import collections.abc
import logging

import numpy as np
import warnings

from .. import detectors as fd, BeamParam
from ..env import warn
from ..plotting.tools import add_colorbar
from ..utilities.units import get_SI_value
from ..cymath.homs import HGModes

LOGGER = logging.getLogger(__name__)


[docs]def add_arrow(line, position=None, direction="right", size=15, color=None): """Add an arrow to a line. Parameters ---------- line : Line2D object The line to which the arrow will be added. position : float or iterable[float], optional The x-position of the arrow. If None, the mean of xdata is taken. should be fractional of line x range, 0.5 is in the middle. direction : {'left', 'right'}, optional The direction of the arrow. Default is 'right'. size : int, optional The size of the arrow in fontsize points. Default is 15. color : str, optional The color of the arrow. If None, the line color is taken. Examples -------- >>> import matplotlib.pyplot as plt >>> line, = plt.plot(np.linspace(0, 1), np.linspace(10, -10)) >>> add_arrow(line, [0, 0.5, 1]) Notes ----- This function adds an arrow to a line plot using the matplotlib library. References ---------- - https://stackoverflow.com/questions/34017866/arrow-on-a-line-plot """ if color is None: color = line.get_color() xdata = line.get_xdata() ydata = line.get_ydata() if position is None: position = [xdata.mean()] else: position = np.atleast_1d(position) positions = np.interp(position, np.linspace(0, 1, len(xdata)), xdata) # find closest index for position in positions: start_ind = np.argmin(np.absolute(xdata - position)) if start_ind >= len(xdata) - 1: start_ind = len(xdata) - 2 if start_ind < 0: start_ind = 0 if direction == "right": end_ind = start_ind + 1 else: end_ind = start_ind - 1 line.axes.annotate( "", xytext=(xdata[start_ind], ydata[start_ind]), xy=(xdata[end_ind], ydata[end_ind]), arrowprops=dict(arrowstyle="->", color=color), size=size, )
[docs]def get_2d_field(modes, amplitudes, qs, x=None, y=None, samples=100, scale=3): """Computes the 2D optical field for a given set of modes, modal amplitudes, and beam parameters. x and y dimensions can be specified if required, otherwise it will return an area of `scale` times the spot sizes. When `x` and `y` are provided `scale` and `samples` will not do anything. Parameters ---------- modes : array_like Pairs of modes (n,m). Can be an 2xN array or a list or tuple of modes. amplitudes : array_like Array of complex amplitudes for each mode qs : BeamParam or Tuple(BeamParam, BeamParam) Compex beam parameter object for x and y planes. If singular value give, qx = qy. x : array_like, optional x points y : array_like, optional y points samples : int, optional Number of sample points to use in x and y scale : float, optional Number of sample points to use in x and y Returns ------- x : double[::1] x points y : double[::1] y points field : complex[:, ::1] Complex optical field of size samples x samples """ # Try and extract the q values try: qx, qy = qs except TypeError: qx = qy = qs HGs = HGModes((qx, qy), np.array(modes).astype(np.int32)) if x is None: x = np.linspace(-scale * qx.w, scale * qx.w, samples) if y is None: y = np.linspace(-scale * qy.w, scale * qy.w, samples) Unm = HGs.compute_2d_modes(x, y) return x, y, (Unm.T * np.array(amplitudes)).T.sum(0)
[docs]def z_w0_mismatch_contour(qref, ax=None, N=100, fmt=None, **kwargs): """For a given Matplotlib axis this will produce a mode-mismatch contour background. The axes are assumed to be z in the x and w0 in y. Limits are automatically taken from the current axes limits. Parameters ---------- qref : complex, BeamParam Reference beamparameter to generate contours with respect to. ax : Axes, optional Axes to plot on, if None plt.gca() is called N : int, optional Number of samples in each axis to use **kwargs Values are passed to plt.contourf function. """ import matplotlib.pyplot as plt if ax is None: ax = plt.gca() X, Y = np.meshgrid( np.linspace(*ax.get_xlim(), N), np.linspace(*ax.get_ylim(), N), ) q = BeamParam(z=X, w0=Y) CS = plt.contour(X[0, :], Y[:, 0], 100 * BeamParam.mismatch(q, qref), **kwargs) plt.clabel(CS, CS.levels, inline=True, fmt=fmt, fontsize=10) plt.colorbar(label="Mismatch [%]") plt.xlabel("z [m]") plt.ylabel("w0 [m]")
[docs]def z_w0_mismatch_contourf(qref, ax=None, N=100, **kwargs): """For a given Matplotlib axis this will produce a mode-mismatch filled contour background. The axes are assumed to be z in the x and w0 in y. Limits are automatically taken from the current axes limits. Parameters ---------- qref : complex, BeamParam Reference beamparameter to generate contours with respect to. ax : Axes, optional Axes to plot on, if None plt.gca() is called N : int, optional Number of samples in each axis to use **kwargs Values are passed to plt.contourf function. """ import matplotlib.pyplot as plt if ax is None: ax = plt.gca() X, Y = np.meshgrid( np.linspace(*ax.get_xlim(), N), np.linspace(*ax.get_ylim(), N), ) q = BeamParam(z=X, w0=Y) plt.contourf(X[0, :], Y[:, 0], 100 * BeamParam.mismatch(q, qref), **kwargs) plt.colorbar(label="Mismatch [%]") plt.xlabel("z [m]") plt.ylabel("w0 [m]")
[docs]def plot_field( modes, amplitudes, qs, *, x=None, y=None, samples=100, scale=3, ax=None, colorbar=True, **kwargs, ): """Plots a 2D optical field for a given set of modes, modal amplitudes, and beam parameters. x and y dimensions can be specified if required, otherwise it will return an area of `scale` times the spot sizes. When `x` and `y` are provided `scale` and `samples` will not do anything. Parameters ---------- modes : array_like Pairs of modes (n,m). Can be an 2xN array or a list or tuple of modes. amplitudes : array_like Array of complex amplitudes for each mode qs : BeamParam or Tuple(BeamParam, BeamParam) Compex beam parameter object for x and y planes. If singular value give, qx = qy. x, y : ndarray, optional Specify x and y coordinates to plot beam samples : int, optional Number of sample points to use in x and y scale : float, optional Number of sample points to use in x and y ax : Axis, optional A Matplotlib axis to put the image on. If None, a new figure will be made. colorbar : bool When True the colorbar will be added **kwargs Extra keyword arguments will be passed to the pcolormesh plotting function. """ import matplotlib.pyplot as plt if ax is None: fig, ax = plt.subplots(1, 1) if "shading" not in kwargs: kwargs["shading"] = "auto" x, y, E = get_2d_field( modes, amplitudes, qs, x=x, y=y, samples=samples, scale=scale ) p = ax.pcolormesh(x, y, (E * E.conj()).real, **kwargs) p.set_rasterized(True) ax.set_aspect("equal") if colorbar: plt.colorbar(p, ax=ax, label=r"Intensity [$\mathrm{W}\mathrm{m}^{-2}$]")
[docs]def bode( f, *Y, axs=None, return_axes=True, figsize=(6, 6), db=True, wrap=True, **kwargs ): """Create a Bode plot for a complex array. Parameters ---------- f : array_like Frequencies *Y : array_like Complex valued transfer functions evaluated at frequencies `f` axs : Axes, optional Axes to use to plot transfer functions on. Magnitude plotted on axs[0] and phase on axs[1]. db : bool, optional Plot magnitude in dB wrap : bool, optional Wrap phase figsize : tuple Figure size **kwargs Additional arguments are passed to the semilog calls Examples -------- >>> axs = bode(f, CLG, label='CLG') >>> bode(f, CHR, axs=axs, label='CHR') """ import matplotlib.pyplot as plt if axs is None: fig, axs = plt.subplots(2, 1, sharex=True, figsize=figsize) if db: axs[0].set_ylabel("Magnitude [dB]") else: axs[0].set_ylabel("Magnitude") axs[1].set_xlabel("Frequency [Hz]") axs[1].set_ylabel("Phase [Deg]") with warnings.catch_warnings(): # Ignore warnings when y=0 in log10 warnings.filterwarnings("ignore", category=RuntimeWarning) for y in Y: if db: mag = 20.0 * np.log10(abs(y)) else: mag = abs(y) phase = np.arctan2(y.imag, y.real) if not wrap: phase = np.unwrap(phase) phase *= 180.0 / np.pi if db is True: axs[0].semilogx(f, mag, **kwargs) else: axs[0].loglog(f, mag, **kwargs) axs[1].semilogx(f, phase, **kwargs) if "label" in kwargs: axs[0].legend() axs[1].legend() if return_axes: return axs
[docs]def ws_phase_space( W, S, OL, cmap="bone", levels=None, wscale="mm", sscale="m", contour_kwargs=None, clabel_kwargs=None, show=True, fig=None, ax=None, ): """Plots the overlap contours for WS phase space data. The return values of :func:`.ws_overlap_grid` correspond to the first three arguments of this function. Parameters ---------- W : :class:`numpy.ndarray` The W space (as a 2D grid). S : :class:`numpy.ndarray` The S space (as a 2D grid). OL : :class:`numpy.ndarray` The overlap as a function of the WS phase space (as a 2D grid). cmap : str or colormap, optional; default: "bone" A matplotlib colormap, or its name. levels : list, optional; default: None List of contour levels to pass to contour plotting explicitly. wscale : str, optional; default: "mm" Units for W-axis (i.e. beam size units). sscale : str, optional; default: "m" Reciprocal units for S-axis (i.e. defocus units). contour_kwargs : dict, optional Dictionary of keyword arguments to pass to matplotlib contour function. If not specified then the following defaults are used: - "colors": "k" - "linestyles": "--" - "linewidths": 0.5 clabel_kwargs : dict, optional Dictionary of keyword arguments to pass to matplotlib clabel function. If not specified then the following defaults are used: - "colors": same as `contour_kwargs` - "inline": True show : bool, optional; default: True Whether to show the figure immediately. fig : :class:`~matplotlib.figure.Figure`, optional, default: None The figure object to use. If not specified a new figure will be drawn. ax : :class:`~matplotlib.axes.Axes`, optional, default: None The axes to use. If not specified the first pair will be used, or created. Ignored if `fig` is None. Returns ------- fig : :class:`~matplotlib.figure.Figure` Handle to the matplotlib Figure. ax : :class:`~matplotlib.axes.Axes` Handle to the matplotlib Axis. See Also -------- :class:`~finesse.gaussian.ws_overlap_grid` """ import matplotlib.pyplot as plt if fig is None: fig = plt.figure() if ax is not None: warn("Ignoring axes specified without figure") ax = None if ax is None: if len(fig.axes) == 0: ax = fig.add_subplot() else: warn("Axes not specified; using first pair.") ax = fig.axes[0] if contour_kwargs is None: contour_kwargs = {} if clabel_kwargs is None: clabel_kwargs = {} # Set some sensible defaults for the overlap contour line properties contour_kwargs.setdefault("colors", "k") contour_kwargs.setdefault("linestyles", "--") contour_kwargs.setdefault("linewidths", 0.5) # And some defaults for the overlap contour label properties clabel_kwargs.setdefault("inline", True) clabel_kwargs.setdefault("colors", contour_kwargs["colors"]) CS = ax.contourf(W, S, OL, cmap=plt.colormaps.get_cmap(cmap), levels=levels) CS2 = ax.contour(W, S, OL, levels=CS.levels, **contour_kwargs) ax.clabel(CS2, **clabel_kwargs) if len(wscale) == 2: wsv = get_SI_value(wscale[0]) ax.set_xticklabels(f"{(x / wsv):.2f}" for x in ax.get_xticks()) if len(sscale) == 2: ssv = get_SI_value(sscale[0]) ax.set_yticklabels(f"{(y / ssv):.2f}" for y in ax.get_yticks()) ax.set_xlabel(f"Gaussian mode size $W$ [{wscale}]") ax.set_ylabel(f"Gaussian defocus $S$ [1/{sscale}]") if show: plt.show() return fig, ax
[docs]class Plotter: """Handler for plotting outputs from a simulation.""" import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.animation as animation
[docs] def __init__(self, solution): self.out = solution # figure size scaling and layout self.scale = 1 self.tight_layout = True # animation attributes self.repeat = True self.repeat_delay = None self.interval = 50 self.blit = True
def __do_scaling_and_layout(self, figures): done = set() for figs_t in figures.values(): if isinstance(figs_t, dict): figs = list(figs_t.values()) if figs and isinstance(figs[0], list): figs = figs[0] elif isinstance(figs_t, list): figs = figs_t else: figs = [figs_t] for fig in figs: if fig in done: continue fig.set_size_inches(self.scale * fig.get_size_inches()) if self.tight_layout: fig.tight_layout() done.add(fig)
[docs] def parameter_axis_label(self, param, axis="x", ax=None): info = self.out.axis_info[param] if ax is not None: if axis == "x": func = ax.set_xlabel else: func = ax.set_ylabel else: if axis == "x": func = Plotter.plt.xlabel else: func = Plotter.plt.ylabel label = f"{info['name']}" if info["unit"]: label += f" [{info['unit']}]" func(label)
[docs] def output_axis_label(self, obj, ax=None): info = self.out.trace_info[obj] if ax is not None: func = ax.set_ylabel else: func = Plotter.plt.ylabel if info["label"] is None: label = "" warn( f"Detector {repr(info['name'])} has no label, unable to set output " f"axis label for this detector." ) label = f"{info['label']}" if info["unit"]: label += f" [{info['unit']}]" func(label)
[docs] @staticmethod def choose_plot_func(logx, logy, magnitude_axis=None): if magnitude_axis is not None: obj = magnitude_axis else: obj = Plotter.plt if logx and logy: return obj.loglog if logx: return obj.semilogx if logy: return obj.semilogy return obj.plot
[docs] @staticmethod def select_detector_cmap(cmaps, det): det_type = type(det) if isinstance(cmaps, dict): if det in cmaps: cmap = cmaps[det] elif det_type in cmaps: cmap = cmaps[det_type] else: LOGGER.info( "No entry for %s or %s in specified cmap dictionary, " "using default colormap", det, det_type, ) cmap = Plotter.plt.get_cmap() else: cmap = cmaps return cmap
[docs] @staticmethod def make_text_handle( text_former, units, x, y, index=0, color="white", fig=None, ax=None ): units_txt = f"\n[{units}]" if units else "" if ax is None: if fig is None: raise RuntimeError() txt_func = Plotter.plt.text transform = fig.axes[0].transAxes else: txt_func = ax.text transform = ax.transAxes return txt_func( x, y, text_former(index) + units_txt, ha="center", va="center", transform=transform, color=color, )
[docs] def make_images( self, fig, extent, z, cmap, det, log, anim_axis, aspect="auto", cbar_label=None, transpose=False, ): x, p = anim_axis norm = None if log: norm = Plotter.colors.LogNorm(z.min(), z.max()) if transpose: z0 = z[0].T else: z0 = z[0] initial_im = Plotter.plt.imshow( z0, norm=norm, extent=extent, cmap=cmap, aspect=aspect, animated=True, ) if cbar_label is None: cbar_label = f"{self.out.trace_info[det]['label']}" if self.out.trace_info[det]["unit"]: cbar_label += f" [{self.out.trace_info[det]['unit']}]" cbar_label += f" ({det})" add_colorbar(initial_im, label=cbar_label) def form_txt(idx): cname = self.out.axis_info[p]["component"] name = self.out.axis_info[p]["name"] return f"{cname} {name} = {x[idx]:.3g}" txt_handle = Plotter.make_text_handle( form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, fig=fig ) images = [[initial_im, txt_handle]] for i in np.arange(1, x.size): if transpose: zi = z[i].T else: zi = z[i] im = Plotter.plt.imshow( zi, norm=norm, extent=extent, cmap=cmap, aspect=aspect, animated=True, ) txt_handle = Plotter.make_text_handle( form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, index=i, fig=fig, ) images.append([im, txt_handle]) return images
[docs] def make_amp_phase_images( self, ax1, ax2, extent, z1, z2, cmap, degrees, det, log, anim_axis, aspect="auto", transpose=False, ): x, p = anim_axis norm = None if log: norm = Plotter.colors.LogNorm(z1.min(), z1.max()) if transpose: z10 = z1[0].T z20 = z2[0].T else: z10 = z1[0] z20 = z2[0] initial_amp_im = ax1.imshow( z10, norm=norm, extent=extent, cmap=cmap, aspect=aspect, animated=True, ) add_colorbar(initial_amp_im, label=r"Amplitude [$\sqrt{{W}}$" + f" ({det})") initial_phase_im = ax2.imshow( z20, extent=extent, cmap=cmap, aspect=aspect, animated=True, ) add_colorbar( initial_phase_im, label=f"Phase [{'deg' if degrees else 'rad'}] ({det})", ) def form_txt(idx): cname = self.out.axis_info[p]["component"] name = self.out.axis_info[p]["name"] return f"{cname} {name} = {x[idx]:.3g}" amp_txt_handle = Plotter.make_text_handle( form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, ax=ax1 ) phase_txt_handle = Plotter.make_text_handle( form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, ax=ax2 ) images = [[initial_amp_im, initial_phase_im, amp_txt_handle, phase_txt_handle]] for i in np.arange(1, x.size): if transpose: z1i = z1[i].T z2i = z2[i].T else: z1i = z1[i] z2i = z2[i] amp_im = ax1.imshow( z1i, norm=norm, extent=extent, cmap=cmap, aspect=aspect, animated=True, ) phase_im = ax2.imshow( z2i, extent=extent, cmap=cmap, aspect=aspect, animated=True, ) amp_txt_handle = Plotter.make_text_handle( form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, index=i, ax=ax1, ) phase_txt_handle = Plotter.make_text_handle( form_txt, self.out.axis_info[p]["unit"], x=0.8, y=0.9, index=i, ax=ax2, ) images.append([amp_im, phase_im, amp_txt_handle, phase_txt_handle]) return images
@staticmethod def _set_fig_at_detname(figures: dict, dets: collections.abc.Iterable | str, fig): if isinstance(dets, str) or not isinstance(dets, collections.abc.Iterable): dets = [dets] figures.update(dict.fromkeys(dets, fig)) def __handle_beam_property_plotting( self, bp_detector_map, cmaps, figures, animations, logx, logy, log, degrees ): if bp_detector_map: sub_figs = figures[fd.BeamPropertyDetector] = {} for det_prop, dets in bp_detector_map.items(): if det_prop == fd.BeamProperty.Q: continue if self.out.axes == 1: self.__plot_1D(det_prop, dets, logx, logy, degrees, sub_figs, figures) elif self.out.axes == 2: self.__plot_2D(det_prop, dets, log, degrees, cmaps, sub_figs, figures) elif self.out.axes == 3: self.__plot_2D_animated( det_prop, dets, log, degrees, cmaps, sub_figs, animations, figures ) def __handle_cavity_property_plotting( self, cp_detector_map, cmaps, figures, animations, logx, logy, log, degrees ): if cp_detector_map: sub_figs = figures[fd.CavityPropertyDetector] = {} for det_prop, dets in cp_detector_map.items(): if det_prop == fd.CavityProperty.EIGENMODE: continue if self.out.axes == 1: self.__plot_1D(det_prop, dets, logx, logy, degrees, sub_figs, figures) elif self.out.axes == 2: self.__plot_2D(det_prop, dets, log, degrees, cmaps, sub_figs, figures) elif self.out.axes == 3: self.__plot_2D_animated( det_prop, dets, log, degrees, cmaps, sub_figs, animations, figures ) def __handle_detector_plotting( self, detector_type_map, cmaps, figures, animations, logx, logy, log, degrees, ): for det_type, dets in detector_type_map.items(): if det_type == fd.CCD: self.__plot_CCDs(dets, log, cmaps, figures, animations) elif det_type == fd.FieldCamera: self.__plot_field_cameras( dets, log, degrees, cmaps, figures, animations ) elif det_type == fd.CCDScanLine: self.__plot_ccd_scan_lines(dets, log, cmaps, figures, animations) elif det_type == fd.FieldScanLine: self.__plot_field_scan_lines( dets, log, degrees, cmaps, figures, animations ) else: if not self.out.axes: warn( f"No x-axes have been defined, unable to plot the " f"outputs of any detectors of type {repr(det_type)}" ) continue if self.out.axes == 1: self.__plot_1D(det_type, dets, logx, logy, degrees, figures) elif self.out.axes == 2: self.__plot_2D(det_type, dets, log, degrees, cmaps, figures) elif self.out.axes == 3: self.__plot_2D_animated( det_type, dets, log, degrees, cmaps, figures, animations ) else: LOGGER.error( "Unable to produce plots of %d-dimensional data", self.out.axes ) def __plot_1D(self, det_type, dets, logx, logy, degrees, figures, allfigs=None): fig = figures.get(det_type) if fig is None: fig = Plotter.plt.figure() else: Plotter.plt.figure(fig.number) mag_and_phase = ( allfigs is None and issubclass(det_type, fd.Detector) and any(self.out.trace_info[det]["dtype"] == np.complex128 for det in dets) ) if mag_and_phase: mag_ax = fig.add_subplot(211) phase_ax = fig.add_subplot(212, sharex=mag_ax) else: mag_ax = None plot_func = Plotter.choose_plot_func(logx, logy, mag_ax) for det in dets: data = self.out[det] if mag_and_phase: amplitude = np.abs(data) plot_func(self.out.x1, amplitude, label=det + " (abs)") mag_ax.set_ylabel(r"Amplitude [$\sqrt{W}$]") mag_ax.legend() phase = np.angle(data, degrees) phase_ax.plot(self.out.x1, phase, label=det + " (phase)") phase_ax.set_ylabel(f"Phase [{'deg' if degrees else 'rad'}]") else: plot_func(self.out.x1, data, label=det) if not mag_and_phase and dets: self.output_axis_label(dets[0]) Plotter.plt.legend() self.parameter_axis_label(self.out.p1) figures[det_type] = fig if allfigs is None: Plotter._set_fig_at_detname(figures, dets, fig) else: Plotter._set_fig_at_detname(allfigs, dets, fig) def __plot_2D(self, det_type, dets, log, degrees, cmaps, figures, allfigs=None): x1 = self.out.x1 x2 = self.out.x2 extent = [x1.min(), x1.max(), x2.min(), x2.max()] for det in dets: fig = Plotter.plt.figure() data = self.out[det].T cmap = Plotter.select_detector_cmap(cmaps, det) mag_and_phase = self.out.trace_info[det]["dtype"] == np.complex128 if mag_and_phase: mag_ax = fig.add_subplot(211) phase_ax = fig.add_subplot(212) amplitude = np.abs(data) norm = None if log: norm = Plotter.colors.LogNorm(amplitude.min(), amplitude.max()) mag_im = mag_ax.imshow( amplitude, extent=extent, norm=norm, cmap=cmap, aspect="auto", ) add_colorbar(mag_im, label=r"Amplitude [$\sqrt{{W}}$]" + f" ({det})") phase = np.angle(data, degrees) phase_im = phase_ax.imshow( phase, extent=extent, cmap=cmap, aspect="auto", ) add_colorbar( phase_im, label=f"Phase [{'deg' if degrees else 'rad'}] ({det})", ) for ax in (mag_ax, phase_ax): self.parameter_axis_label(self.out.p1, ax=ax) self.parameter_axis_label(self.out.p2, axis="y", ax=ax) else: norm = None if log: norm = Plotter.colors.LogNorm(data.min(), data.max()) im = Plotter.plt.imshow( data, extent=extent, norm=norm, cmap=cmap, aspect="auto", ) add_colorbar( im, label=f"{self.out.trace_info[det]['label']} [{self.out.trace_info[det]['unit']}] ({det})", ) self.parameter_axis_label(self.out.p1) self.parameter_axis_label(self.out.p2, axis="y") if det_type in figures: figures[det_type].append(fig) else: figures[det_type] = [fig] if allfigs is None: Plotter._set_fig_at_detname(figures, det, fig) else: Plotter._set_fig_at_detname(allfigs, det, fig) def __plot_2D_animated( self, det_type, dets, log, degrees, cmaps, figures, animations, allfigs=None, ): x1 = self.out.x1 x2 = self.out.x2 extent = [x1.min(), x1.max(), x2.min(), x2.max()] for det in dets: fig = Plotter.plt.figure() data = self.out[det] cmap = Plotter.select_detector_cmap(cmaps, det) mag_and_phase = self.out.trace_info[det]["dtype"] == np.complex128 if mag_and_phase: mag_ax = fig.add_subplot(211) phase_ax = fig.add_subplot(212) amplitude = np.abs(data) phase = np.angle(data, degrees) images = self.make_amp_phase_images( mag_ax, phase_ax, extent, amplitude, phase, cmap, degrees, det, log, (self.out.x3, self.out.p3), transpose=True, ) for ax in (mag_ax, phase_ax): self.parameter_axis_label(self.out.p1, ax=ax) self.parameter_axis_label(self.out.p2, axis="y", ax=ax) else: images = self.make_images( fig, extent, data, cmap, det, log, (self.out.x3, self.out.p3), transpose=True, ) self.parameter_axis_label(self.out.p1) self.parameter_axis_label(self.out.p2, axis="y") animations[det] = Plotter.animation.ArtistAnimation( fig, images, interval=self.interval, repeat=self.repeat, repeat_delay=self.repeat_delay, blit=self.blit, ) if det_type in figures: figures[det_type].append(fig) else: figures[det_type] = [fig] if allfigs is None: Plotter._set_fig_at_detname(figures, det, fig) else: Plotter._set_fig_at_detname(allfigs, det, fig) def __plot_CCDs(self, dets, log, cmaps, figures, animations): if self.out.axes > 1: warn("Skipping CCD plots as multiple axes have been defined") return for det in dets: fig = Plotter.plt.figure() data = self.out[det] norm = None if log: norm = Plotter.colors.LogNorm(data.min(), data.max()) w0_scaled = self.out.trace_info[det]["w0_scaled"] cmap = Plotter.select_detector_cmap(cmaps, det) extent = [ *self.out.trace_info[det]["xlim"], *self.out.trace_info[det]["ylim"], ] cb_label = r"Intensity [W m$^{-2}$ px]" + f" ({det})" if not self.out.axes: # single image im = Plotter.plt.imshow( data.T, norm=norm, extent=extent, cmap=cmap, aspect="equal", ) add_colorbar(im, label=cb_label) else: images = self.make_images( fig, extent, data, cmap, det, log, (self.out.x1, self.out.p1), aspect="equal", cbar_label=cb_label, transpose=True, ) animations[det] = Plotter.animation.ArtistAnimation( fig, images, interval=self.interval, repeat=self.repeat, repeat_delay=self.repeat_delay, blit=self.blit, ) Plotter.plt.xlabel(r"$\mathrm{x}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]") Plotter.plt.ylabel(r"$\mathrm{y}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]") if fd.CCD in figures: figures[fd.CCD].append(fig) else: figures[fd.CCD] = [fig] Plotter._set_fig_at_detname(figures, det, fig) def __plot_field_cameras(self, dets, log, degrees, cmaps, figures, animations): if self.out.axes > 1: warn("Skipping ComplexCamera plots as multiple axes have been defined") return for det in dets: fig = Plotter.plt.figure() data = self.out[det] norm = None if log: norm = Plotter.colors.LogNorm(data.min(), data.max()) w0_scaled = self.out.trace_info[det]["w0_scaled"] cmap = Plotter.select_detector_cmap(cmaps, det) extent = [ *self.out.trace_info[det]["xlim"], *self.out.trace_info[det]["ylim"], ] mag_ax = fig.add_subplot(211) phase_ax = fig.add_subplot(212) amplitude = np.abs(data) phase = np.angle(data, degrees) if not self.out.axes: # single image mag_im = mag_ax.imshow( amplitude.T, norm=norm, extent=extent, cmap=cmap, aspect="equal", ) add_colorbar(mag_im, label=det + r" Amplitude [$\sqrt{W}$ px]") phase_im = phase_ax.imshow( phase.T, extent=extent, cmap=cmap, aspect="equal", ) add_colorbar( phase_im, label=det + f" Phase [{'deg' if degrees else 'rad'}]" ) else: images = self.make_amp_phase_images( mag_ax, phase_ax, extent, amplitude, phase, cmap, degrees, det, log, (self.out.x1, self.out.p1), aspect="equal", transpose=True, ) animations[det] = Plotter.animation.ArtistAnimation( fig, images, interval=self.interval, repeat=self.repeat, repeat_delay=self.repeat_delay, blit=self.blit, ) for ax in (mag_ax, phase_ax): ax.set_xlabel(r"$\mathrm{x}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]") ax.set_ylabel(r"$\mathrm{y}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]") if fd.FieldCamera in figures: figures[fd.FieldCamera].append(fig) else: figures[fd.FieldCamera] = [fig] Plotter._set_fig_at_detname(figures, det, fig) def __plot_ccd_scan_lines( self, dets, log, cmap, figures, animations, ): if self.out.axes > 2: warn("Skipping CCDScanLine plots as more than two axes have been defined") return if not self.out.axes: fig = Plotter.plt.figure() for det in dets: if self.out.axes: fig = Plotter.plt.figure() data = self.out[det] if self.out.trace_info[det]["direction"] == "x": x = self.out.trace_info[det]["xdata"] else: x = self.out.trace_info[det]["ydata"] w0_scaled = self.out.trace_info[det]["w0_scaled"] if not self.out.axes: plot_func = Plotter.choose_plot_func(log, log) plot_func(x, data, label=det) else: extent = [x.min(), x.max(), self.out.x1.min(), self.out.x1.max()] if self.out.axes == 1: norm = None if log: norm = Plotter.colors.LogNorm(data.min(), data.max()) im = Plotter.plt.imshow( data.T, extent=extent, norm=norm, cmap=cmap, aspect="auto", ) add_colorbar( im, label=f"{self.out.trace_info[det]['label']} [{self.out.trace_info[det]['unit']}] ({det})", ) else: images = self.make_images( fig, extent, data, cmap, det, log, (self.out.x2, self.out.p2), transpose=True, ) animations[det] = Plotter.animation.ArtistAnimation( fig, images, interval=self.interval, repeat=self.repeat, repeat_delay=self.repeat_delay, blit=self.blit, ) self.parameter_axis_label(self.out.p1, axis="y") if fd.FieldScanLine in figures: figures[fd.FieldScanLine].append(fig) else: figures[fd.FieldScanLine] = [fig] Plotter._set_fig_at_detname(figures, det, fig) Plotter.plt.xlabel( r"$\mathrm{" + self.out.trace_info[det]["direction"] + r"}$ [$\mathrm{w}_0$]" if w0_scaled else "[m]" ) if not self.out.axes: self.output_axis_label(dets[0]) Plotter.plt.legend() figures[fd.FieldScanLine] = fig Plotter._set_fig_at_detname(figures, dets, fig) def __plot_field_scan_lines( self, dets, log, degrees, cmap, figures, animations, ): if self.out.axes > 2: warn("Skipping FieldScanLine plots as more than two axes have been defined") return if not self.out.axes: fig = Plotter.plt.figure() for det in dets: if self.out.axes: fig = Plotter.plt.figure() mag_ax = fig.add_subplot(211) phase_ax = fig.add_subplot(212) if self.out.trace_info[det]["direction"] == "x": x = self.out.trace_info[det]["xdata"] else: x = self.out.trace_info[det]["ydata"] w0_scaled = self.out.trace_info[det]["w0_scaled"] amplitude = np.abs(self.out[det]) phase = np.angle(self.out[det], degrees) if not self.out.axes: plot_func = Plotter.choose_plot_func(log, log, mag_ax) plot_func(x, amplitude, label=det) mag_ax.set_ylabel(r"Amplitude [$\sqrt{W}$ px]") mag_ax.legend() phase_ax.plot(x, phase, label=det) phase_ax.set_ylabel(f"Phase [{'deg' if degrees else 'rad'}]") phase_ax.legend() else: extent = [x.min(), x.max(), self.out.x1.min(), self.out.x1.max()] if self.out.axes == 1: norm = None if log: norm = Plotter.colors.LogNorm(amplitude.min(), amplitude.max()) mag_im = mag_ax.imshow( amplitude.T, norm=norm, extent=extent, cmap=cmap, aspect="auto", ) add_colorbar(mag_im, label=r"Ampltide [$\sqrt{W}$ px]") phase_im = phase_ax.imshow( phase.T, extent=extent, cmap=cmap, aspect="auto", ) add_colorbar( phase_im, label=f"Phase [{'deg' if degrees else 'rad'}]" ) else: images = self.make_amp_phase_images( mag_ax, phase_ax, extent, amplitude, phase, cmap, degrees, det, log, (self.out.x2, self.out.p2), aspect="equal", transpose=True, ) animations[det] = Plotter.animation.ArtistAnimation( fig, images, interval=self.interval, repeat=self.repeat, repeat_delay=self.repeat_delay, blit=self.blit, ) for ax in (mag_ax, phase_ax): self.parameter_axis_label(self.out.p1, axis="y", ax=ax) if fd.FieldScanLine in figures: figures[fd.FieldScanLine].append(fig) else: figures[fd.FieldScanLine] = [fig] Plotter._set_fig_at_detname(figures, det, fig) for ax in (mag_ax, phase_ax): ax.set_xlabel( r"$\mathrm{" + self.out.trace_info[det]["direction"] + r"}$ " + r"[$\mathrm{w}_0$]" if w0_scaled else "[m]" ) if not self.out.axes: figures[fd.FieldScanLine] = fig Plotter._set_fig_at_detname(figures, dets, fig)
[docs] def plot( self, *detectors, log=False, logx=None, logy=None, degrees=True, cmap=None, show=True, separate=True, _test_fig_handles=None, ): r"""Plots the outputs from the specified `detectors` of a given solution `out`, or all detectors in the executed model if `detectors` is `None`. Detectors are sorted by their type and the outputs of each are plotted on their own figure accordingly - i.e. all amplitude detector outputs are plotted on one figure, all power detector outputs on another figure etc. .. note:: It is recommended to use this function with :func:`finesse.plotting.tools.init`. This then means that all figures produced by this function will use matplotlib rcParams corresponding to the style selected. For example:: import finesse finesse.plotting.init() model = finesse.parse(\""" l L0 P=1 s s0 L0.p1 ITM.p1 m ITM R=0.99 T=0.01 Rc=inf s CAV ITM.p2 ETM.p1 L=1 m ETM R=0.99 T=0.01 Rc=10 modes maxtem=4 gauss L0.p1.o q=(-0.4+2j) cav FP ITM.p2.o ITM.p2.i ad ad00 ETM.p1.i f=L0.f n=0 m=0 ad ad02 ETM.p1.i f=L0.f n=0 m=2 pd C ETM.p1.i \""") model.run("xaxis(L0.f, (-100M), 100M, 1000, lin)").plot(logy=True, figsize_scale=2) will produce two figures (one for the power-detector output and another for the amplitude detectors) which use rcParams from the `default` style-sheet. Using `figsize_scale` here then scales these figures whilst keeping the proportions defined in this style-sheet constant. .. rubric:: Multi-dimensional scan plotting behaviour If multiple parameters have been scanned in the underlying model associated with this solution object, then the form of the resulting plots produced here will depend on a number of options: - If two parameters have been scanned then all non-CCD detector ouputs will be plotted on separate image plot figures. All CCD plots will be ignored. - If a single parameter has been scanned and `index` is not specified then all CCD detector outputs will be plotted on separate animated figures. Or if `index` is specified, then all CCD detector outputs will be plotted on separate image plot figures *at the specified index of the scanned axis*. Parameters ---------- detectors : sequence or str or type or :class:`.Detector`, optional An iterable (or singular) of strings (corresponding to detector names), :class:`.Detector` instances or detector types. Defaults to `None` so that all detector outputs are plotted. log : bool, optional Use log-log scale. Also applies to image plots so that colours are normalised on a log-scale between limits of image data. Defaults to `False`. logx : bool, optional Use log-scale on x-axis if appropriate, defaults to the value of `log`. logy : bool, optional Use log-scale on y-axis if appropriate, defaults to the value of `log`. degrees : bool, optional Plots angle and phase outputs in degrees, defaults to `True`. show : bool, optional Shows all the produced figures if true, defaults to `True`. separate : bool, optional Plots the output of different detector types on different axes if true, defaults to `True`. Returns ------- figures : dict A dictionary mapping `type(detector)` and detector names to corresponding :class:`~matplotlib.figure.Figure` objects. Note that some keys, i.e. those of each `type(detector)` and the names of the detectors of that type, share the same values. animations : dict A dictionary of `detector.name : animation` mappings. """ # handle case where detectors are given as some iterable list/tuple if ( len(detectors) == 1 and isinstance(detectors[0], collections.abc.Iterable) and not isinstance(detectors[0], str) ): detectors = detectors[0] if logx is None: logx = log if logy is None: logy = log # Convert from any objects to names if len(detectors) == 0: detectors = self.out.detectors else: detectors = tuple(x if isinstance(x, str) else x.name for x in detectors) detector_type_map = {} bp_detector_map = {} cp_detector_map = {} plot_infos = tuple(self.out.trace_info[det] for det in detectors) for info in plot_infos: if info["detector_type"] is fd.BeamPropertyDetector: if info["detecting"] in bp_detector_map: bp_detector_map[info["detecting"]].append(info["name"]) else: bp_detector_map[info["detecting"]] = [info["name"]] elif info["detector_type"] is fd.CavityPropertyDetector: if info["detecting"] in cp_detector_map: cp_detector_map[info["detecting"]].append(info["name"]) else: cp_detector_map[info["detecting"]] = [info["name"]] else: if separate: key = info["detector_type"] else: key = type(fd.Detector) if key in detector_type_map: detector_type_map[key].append(info["name"]) else: detector_type_map[key] = [info["name"]] if cmap is None: cmap = Plotter.plt.get_cmap() figures = _test_fig_handles or {} animations = {} self.__handle_beam_property_plotting( bp_detector_map, cmap, figures, animations, logx, logy, log, degrees, ) self.__handle_cavity_property_plotting( cp_detector_map, cmap, figures, animations, logx, logy, log, degrees, ) self.__handle_detector_plotting( detector_type_map, cmap, figures, animations, logx, logy, log, degrees, ) self.__do_scaling_and_layout(figures) if show: Plotter.plt.show() if not animations: return figures return figures, animations
[docs]def rescale_axes_SI_units( *, xaxis=None, fmt_xaxis="{:g}", yaxis=None, fmt_yaxis="{:g}", ax=None ): """Rescales either the x or y axes on a matplotlib axis object by some SI scale factor. This works by just changing the major tick labels rather than rescaling any data used so can be used after any plot has been made. Parameters ---------- xaxis, yaxis : str An SI scaling character, see `finesse.utilities.units.SI_LABEL` fmt_xaxis, fmt_yaxis : str Python format string for setting the format of the ticks Examples -------- Recsale a plot into units of milli on the xaxis and kilo on the y with 2 decimal places on x and 3 on y: rescale_axes_SI_units( xaxis='m', fmt_xaxis="{:.2f}", yaxis='k', fmt_yaxis="{:.3f}" ) """ import matplotlib.pyplot as plt from matplotlib import ticker from finesse.utilities.units import get_SI_value ax = ax or plt.gca() if xaxis is not None: xscale = get_SI_value(xaxis) ax.xaxis.set_major_formatter( ticker.FuncFormatter(lambda x, _: fmt_xaxis.format(x / xscale)) ) if yaxis is not None: yscale = get_SI_value(yaxis) ax.yaxis.set_major_formatter( ticker.FuncFormatter(lambda y, _: fmt_yaxis.format(y / yscale)) )