"""Optical cavities with associated properties."""
import logging
from copy import deepcopy
import math
import cmath
import networkx as nx
import numpy as np
from .node import OpticalNode, Port
from ..config import config_instance
from .. import components
from ..env import warn
from ..tracing.tree import TraceTree
from ..cymath.math import sgn
from ..constants import values as constants
from ..parameter import info_parameter
from ..gaussian import BeamParam
from ..utilities.components import refractive_index
from ..utilities import OrderedSet
from .trace_dependency import TraceDependency
LOGGER = logging.getLogger(__name__)
# TODO (sjr) Add Cavity.gain property
# - optical gain eqn? simple for 2 mirror cav, but need general eqn.
[docs]@info_parameter("FSR", "FSR", units="Hz")
@info_parameter("loss", "Loss")
@info_parameter("finesse", "Finesse")
@info_parameter("FWHM", "FWHM", units="Hz")
@info_parameter("storage_time", "Storage time", units="s")
@info_parameter("pole", "Pole", units="Hz")
@info_parameter("round_trip_optical_length", "Round trip length", units="m")
@info_parameter("w0", "Waist size", units="m")
@info_parameter("waistpos", "Waist position", units="m")
@info_parameter("m", "Stability (m-factor)")
@info_parameter("g", "Stability (g-factor)")
@info_parameter("gouy", "Round trip gouy phase", units="°")
@info_parameter("mode_separation", "Mode separation", units="Hz")
@info_parameter("S", "Resolution")
@info_parameter("is_stable", "Stable")
@info_parameter("is_critical", "Critically stable")
# IMPORTANT: renaming this class impacts the katscript spec and should be avoided!
class Cavity(TraceDependency):
"""Represents a cavity in an interferometer configuration.
This class stores the shortest round-trip path from the start node of the cavity
(via a given node) back to the same node, and holds symbolic expressions for
each physical attribute of the cavity. Numeric values corresponding to these
attributes are obtained through the relevant properties.
Adding a Cavity to a :class:`.Model` results in the beam parameters of all nodes in the cavity
path being set according to the cavity eigenmode (:attr:`Cavity.q`) when a beam trace is
performed (e.g. at the start of a modal based simulation). The mode of the cavity is then also
used as a trace starting point when setting beam parameters at nodes outside of the cavity - see
:ref:`tracing_manual` for details on the beam tracing algorithm.
Parameters
----------
name : str
Name of newly created cavity.
source : :class:`.OpticalNode` or :class:`.Port`
Node / Port that the cavity path starts from. If no `via` node is specified, then the cavity
path will be given by the shortest path from source back to the component that owns
source.
If a port is given then the *output* optical node of that port will be used as the source.
via : :class:`.OpticalNode`, optional
Node that the cavity path must traverse via; defaults to `None`.
Note that, unlike `source`, this cannot be a :class:`.Port` object as this would be ambiguous
for beamsplitter type components - i.e. determination of which node to use cannot be
assumed automatically.
priority : number, optional; default: 0
Priority value for beam tracing. Beam tracing dependencies are sorted in descending order
of priority - i.e. higher priority value dependencies will be traced first. Any dependency
with a priority value of zero will be traced, after non-zero priority dependencies, in alphabetic
order of the dependency names.
"""
[docs] def __init__(self, name, source, via=None, priority=0):
super().__init__(name, priority)
# If the source is a port then use the output node
# of this port as the source for the cavity path
if isinstance(source, Port):
source = source.o
if not isinstance(source, OpticalNode):
raise TypeError("Expected source to be an OpticalNode.")
else:
if source.is_input:
raise ValueError("Source must be an output node.")
if not isinstance(source.component, components.Surface):
msg = (
"Expected owner of source node to be a Surface, "
f"but got a {type(self.source.component)}"
)
raise TypeError(msg)
if via is not None and not isinstance(via, OpticalNode):
raise TypeError("Expected via to be an OpticalNode.")
self.__source = source
self.__via = via
self.__path = None
def __deepcopy__(self, memo):
# TraceTree instances are non-copyable by design so
# temporarily set __tree field to None to avoid copy
tmp = self.__tree
self.__tree = None
new = super().__deepcopy__(memo)
memo[id(self)] = new
new.__dict__.update(deepcopy(self.__dict__, memo))
new_model = memo.get(id(self._model))
new._reset_model(new_model)
def update_later():
new.initialise()
new_model.after_deepcopy.append(update_later)
# Re-build the tree on self due to above - not an
# expensive operation so no big deal for now
self.__tree = tmp
return new
def _on_add(self, model):
if model is not self.source._model:
raise Exception(
f"Cavity {repr(self)} is using a source node {self.source} from a different model"
)
[docs] def draw(self):
"""A string representation of the cavity route.
Returns
-------
s : str
The node path of the cavity as a string.
"""
return self.__tree.draw()
@property
def path(self):
"""The :class:`.OpticalPath` instance of the cavity.
:`getter`: Returns the path of the cavity (read-only), i.e. the shortest round
trip path from the start node of cavity (via a given node) back to
the same node.
See Also
--------
finesse.model.Model.path : Retrieves an ordered container of the path trace between two
specified nodes.
"""
return self.__path
@property
def source(self):
"""Starting node of the cavity.
:`getter`: Returns the cavity starting node (read-only).
"""
return self.__source
@property
def via(self):
"""Via node of the cavity.
:`getter`: Returns the cavity via node (read-only).
"""
return self.__via
@property
def is_fabry_perot(self):
"""Flag indicating whether the cavity is a Fabry-Perot cavity.
:`getter`: Returns true if the cavity is a Fabry-Perot, false otherwise
(read-only).
"""
if self.path is None:
return False
unique_spaces = OrderedSet(self.path.spaces)
# cavity is Fabry-Perot if there's only one space in the path
return len(unique_spaces) == 1
### Non-geometric properties ###
@property
def FSR(self):
r"""The free-spectral-range (FSR) of the cavity.
This quantity is defined as,
.. math::
\mathrm{FSR} = \frac{c}{2L},
where :math:`c` is the speed of light and :math:`L` is the
length of the cavity.
:`getter`: Returns the cavity free-spectral-range (read-only).
"""
return self._FSR.eval()
@property
def loss(self):
r"""The round-trip loss of the cavity as a fraction of the incoming power.
This quantity is computed via,
.. math::
L = 1 - \prod_{\mathrm{i}}^{N_{\mathrm{refl}}} R_{\mathrm{i}} \times
\prod_{\mathrm{i}}^{N_{\mathrm{trns}}} T_{\mathrm{i}},
i.e. one minus the product of all reflections multiplied with the product of all
transmissions for a round-trip of the cavity.
:`getter`: Returns the fractional round-trip cavity loss (read-only).
"""
return self._loss.eval()
@property
def finesse(self):
r"""The finesse of the cavity.
This quantity is defined as,
.. math::
\mathcal{F} = \frac{\pi \sqrt{\widetilde{l}}}{1 - \widetilde{l}},
where :math:`\widetilde{l} = \sqrt{1 - L}` and :math:`L`
is the cavity loss.
:`getter`: Returns the cavity finesse (read-only).
"""
return self._finesse.eval()
@property
def FWHM(self):
r"""The cavity full-width-half-maximum (FWHM).
This quantity is defined as,
.. math::
\mathrm{FWHM} = \frac{\mathrm{FSR}}{\mathcal{F}},
where :math:`\mathcal{F}` is the cavity finesse.
:`getter`: Returns the FWHM of the cavity (read-only).
See Also
--------
Cavity.FSR : Free-spectral-range of a cavity.
Cavity.finesse : Finesse of a cavity.
"""
return self._FWHM.eval()
@property
def storage_time(self):
r"""The cavity storage time (:math:`\tau`).
This quantity is defined as,
.. math::
\tau = \frac{1}{\pi\mathrm{FWHM}},
where :math:`\mathrm{FWHM}` is the full-width at half-maximum
of the cavity resonance.
:`getter`: Returns the storage time of the cavity (read-only).
See Also
--------
Cavity.FWHM : Full-width at half-maximum (FWHM) of a cavity.
"""
return self._tau.eval()
@property
def pole(self):
r"""The pole-frequency of the cavity.
This quantity is defined as,
.. math::
f_{\mathrm{pole}} = \frac{\mathrm{FWHM}}{2},
where :math:`\mathrm{FWHM}` is the full-width at half-maximum
of the cavity resonance.
:`getter`: Returns the cavity pole-frequency (read-only).
See Also
--------
Cavity.FWHM : Full-width at half-maximum (FWHM) of a cavity.
"""
return self._pole.eval()
### Geometric properties ###
@property
def round_trip_optical_length(self):
"""The round-trip optical path length of the cavity (in metres).
:`getter`: Returns the length of a single round-trip of the cavity (read-only).
"""
return self._optical_length.eval()
@property
def ABCD(self):
"""The round-trip ABCD matrix of the cavity in both planes.
:`getter`: Returns a :class:`numpy.ndarray` with shape ``(2, 2, 2)`` of the cavity
round-trip matrices in the tangential and sagittal planes, respectively (read-only).
"""
self.__tree.compute_rt_abcd(self._ABCDx, self._ABCDy)
Ms = np.zeros((2, 2, 2))
Ms[0][:] = self._ABCDx[:]
Ms[1][:] = self._ABCDy[:]
return Ms
def __get_ABCD(self, direction):
return getattr(self, f"ABCD{direction}")
@property
def ABCDx(self):
"""The tangential round-trip ABCD matrix of the cavity.
:`getter`: Returns the cavity round-trip matrix in the tangential plane
(read-only).
"""
self.__tree.compute_rt_abcd(abcdx=self._ABCDx)
return self._ABCDx
@property
def ABCDy(self):
"""The sagittal round-trip ABCD matrix of the cavity.
:`getter`: Returns the cavity round-trip matrix in the sagittal plane (read-only).
"""
self.__tree.compute_rt_abcd(abcdy=self._ABCDy)
return self._ABCDy
@property
def q(self):
r"""The eigenmode of the cavity in both planes.
For a single plane, the cavity eigenmode :math:`q_{\mathrm{cav}}` is computed by solving,
.. math::
C q_{\mathrm{cav}}^2+(D-A)q_{\mathrm{cav}} - B = 0,
where :math:`A`, :math:`B`, :math:`C` and :math:`D` are the elements of the
round-trip ABCD matrix of the cavity for this plane.
:`getter`: Returns a :class:`numpy.ndarray` of the cavity eigenmodes in the tangential and
sagittal planes, respectively, where both values are :class:`.BeamParam`
instances (read-only).
"""
return np.array([self.qx, self.qy])
def __get_lambda0(self):
if self.has_model:
lambda0 = self._model.lambda0
else:
lambda0 = config_instance()["constants"].getfloat("lambda0")
return lambda0
def __compute_eigenmode(self, direction):
ABCD = self.__get_ABCD(direction)
C = ABCD[1][0]
if C == 0.0: # confocal cavity - g = 0 (critical)
return None
half_inv_C = 0.5 / C
D_minus_A = ABCD[1][1] - ABCD[0][0]
minus_B = -1 * ABCD[0][1]
sqrt_term = cmath.sqrt(D_minus_A * D_minus_A - 4 * C * minus_B)
lower = (-D_minus_A - sqrt_term) * half_inv_C
upper = (-D_minus_A + sqrt_term) * half_inv_C
if lower.imag > 0:
q = lower
elif upper.imag > 0:
q = upper
else:
return None
return q
@property
def qx(self):
"""The eigenmode of the cavity in the tangential plane.
:`getter`: Returns the cavity's tangential plane eigenmode (read-only).
See Also
--------
Cavity.q
"""
q = self.__compute_eigenmode("x")
if q is None:
return None
nr = refractive_index(self.source)
return BeamParam(q=q * nr, wavelength=self.__get_lambda0(), nr=nr)
@property
def qy(self):
"""The eigenmode of the cavity in the sagittal plane.
:`getter`: Returns the cavity's sagittal plane eigenmode (read-only).
See Also
--------
Cavity.q
"""
q = self.__compute_eigenmode("y")
if q is None:
return None
nr = refractive_index(self.source)
return BeamParam(q=q * nr, wavelength=self.__get_lambda0(), nr=nr)
@property
def w0(self):
"""The waist size of the cavity in both planes.
:`getter`: Returns a :class:`numpy.ndarray` of the cavity waist size in the tangential
and sagittal planes, respectively (read-only).
"""
return np.array([self.w0x, self.w0y])
@property
def w0x(self):
"""The waist size of the cavity in the tangential plane.
Equivalent to ``cavity.qx.w0``.
:`getter`: Returns the cavity waist size in the tangential plane (read-only).
"""
if not self.is_stable_x:
return np.nan
return self.qx.w0
@property
def w0y(self):
"""The waist size of the cavity in the sagittal plane.
Equivalent to ``cavity.qy.w0``.
:`getter`: Returns the cavity waist size in the sagittal plane (read-only).
"""
if not self.is_stable_y:
return np.nan
return self.qy.w0
@property
def waistpos(self):
"""The position of the cavity waist in both planes.
This distance to the waist is measured using the position of :attr:`Cavity.source`
node as the origin.
:`getter`: Returns a :class:`numpy.ndarray` of the cavity waist position in the tangential
and sagittal planes, respectively (read-only).
"""
return np.array([self.waistpos_x, self.waistpos_y])
@property
def waistpos_x(self):
"""The waist position of the cavity in the tangential plane.
Equivalent to ``cavity.qx.z``.
:`getter`: Returns the cavity waist position in the tangential plane (read-only).
"""
if not self.is_stable_x:
return np.nan
return self.qx.z
@property
def waistpos_y(self):
"""The waist position of the cavity in the sagittal plane.
Equivalent to ``cavity.qy.z``.
:`getter`: Returns the cavity waist position in the sagittal plane (read-only).
"""
if not self.is_stable_y:
return np.nan
return self.qy.z
@property
def m(self):
r"""The stability of the cavity, in both planes, given by the :math:`m`-factor:
.. math::
m = \frac{A + D}{2},
where :math:`A` and :math:`D` are the relevant entries of the
cavity round-trip ABCD matrix. The cavity is stable if the
following condition is satisfied:
.. math::
-1 \leq m \leq 1.
:`getter`: Returns a :class:`numpy.ndarray` of the cavity stability in the tangential and
sagittal planes, respectively (read-only).
"""
return np.array([self.mx, self.my])
def __compute_m(self, direction):
ABCD = self.__get_ABCD(direction)
A = ABCD[0][0]
D = ABCD[1][1]
return 0.5 * (A + D)
@property
def mx(self):
"""The stability, m, of the cavity in the tangential plane.
:`getter`: Returns the tangential plane m-factor (read-only).
See Also
--------
Cavity.m
Cavity.gx
"""
return self.__compute_m("x")
@property
def my(self):
"""The stability, m, of the cavity in the sagittal plane.
:`getter`: Returns the sagittal plane m-factor (read-only).
See Also
--------
Cavity.m
Cavity.gy
"""
return self.__compute_m("y")
@property
def g(self):
r"""The stability of the cavity, in both planes, given by the :math:`g`-factor:
.. math::
g = \frac{A + D + 2}{4},
where :math:`A` and :math:`D` are the relevant entries of the
cavity round-trip ABCD matrix. The cavity is stable if the
following condition is satisfied:
.. math::
0 \leq g \leq 1.
:`getter`: Returns a :class:`numpy.ndarray` of the cavity stability in the tangential and
sagittal planes, respectively (read-only).
"""
return np.array([self.gx, self.gy])
def __compute_g(self, direction):
m = self.__compute_m(direction)
return 0.5 * (1 + m)
@property
def gx(self):
"""The stability, g, of the cavity in the tangential plane.
:`getter`: Returns the tangential plane g-factor (read-only).
See Also
--------
Cavity.g
Cavity.mx
"""
return self.__compute_g("x")
@property
def gy(self):
"""The stability, g, of the cavity in the sagittal plane.
:`getter`: Returns the sagittal plane g-factor (read-only).
See Also
--------
Cavity.g
Cavity.my
"""
return self.__compute_g("y")
@property
def gouy(self):
r"""The accumulated round-trip Gouy phase of the cavity in both planes (in
degrees).
This is given by,
.. math::
\psi_{\mathrm{rt}} = 2\,\arccos{\left( \mathrm{sgn}(B) \sqrt{g} \right)},
where :math:`B` is the corresponding element of the round-trip
ABCD matrix and :math:`g` is the cavity stability parameter
returned by :attr:`Cavity.g`.
:`getter`: Returns a :class:`numpy.ndarray` of the accumulated round-trip Gouy phase in the
tangential and sagittal planes, respectively (read-only).
"""
return np.array([self.gouy_x, self.gouy_y])
def __compute_round_trip_gouy(self, direction, deg=True):
ABCD = self.__get_ABCD(direction)
B = ABCD[0][1]
g = getattr(self, f"g{direction}")
psi = 2 * math.acos(sgn(B) * math.sqrt(g))
if deg:
return math.degrees(psi)
return psi
@property
def gouy_x(self):
"""The round-trip Gouy phase in the tangential plane (in degrees).
If the cavity is not stable, then ``np.nan`` is returned.
:`getter`: Returns the tangential plane round-trip Gouy phase (read-only).
See Also
--------
Cavity.gouy
"""
if not self.is_stable_x:
return np.nan
return self.__compute_round_trip_gouy("x")
@property
def gouy_y(self):
"""The round-trip Gouy phase in the sagittal plane (in degrees).
If the cavity is not stable, then ``np.nan`` is returned.
:`getter`: Returns the sagittal plane round-trip Gouy phase (read-only).
See Also
--------
Cavity.gouy
"""
if not self.is_stable_y:
return np.nan
return self.__compute_round_trip_gouy("y")
@property
def mode_separation(self):
r"""The mode separation frequency of the cavity in both planes.
This is defined by,
.. math::
\delta f =
\begin{cases}
\frac{\psi_{\mathrm{rt}}}{2\pi}
\Delta f, & \text{if } \psi_{\mathrm{rt}} \leq \pi\\
(1 - \frac{\psi_{\mathrm{rt}}}{2\pi}) \Delta f, & \text{if } \psi_{\mathrm{rt}}
> \pi,
\end{cases}
where :math:`\psi_{\mathrm{rt}}` is the accumulated round-trip Gouy phase
and :math:`\Delta f` is the FSR of the cavity.
:`getter`: Returns a :class:`numpy.ndarray` of the mode separation frequency in the tangential
and sagittal planes, respectively (read-only).
"""
return np.array([self.mode_separation_x, self.mode_separation_y])
def __compute_mode_separation(self, direction):
gouy = self.__compute_round_trip_gouy(direction, deg=False)
fsr = self.FSR
df = 0.5 * fsr * gouy / np.pi
if gouy > np.pi:
df = fsr - df
return df
@property
def mode_separation_x(self):
"""The mode separation frequency in the tangential plane.
If the cavity is not stable, then ``np.nan`` is returned.
:`getter`: Returns the tangential plane mode separation frequency (read-only).
See Also
--------
Cavity.mode_separation
"""
if not self.is_stable_x:
return np.nan
return self.__compute_mode_separation("x")
@property
def mode_separation_y(self):
"""The mode separation frequency in the sagittal plane.
If the cavity is not stable, then ``np.nan`` is returned.
:`getter`: Returns the sagittal plane mode separation frequency (read-only).
See Also
--------
Cavity.mode_separation
"""
if not self.is_stable_y:
return np.nan
return self.__compute_mode_separation("y")
@property
def S(self):
r"""The resolution of the cavity in both planes.
Cavity resolution, :math:`S`, is defined by,
.. math::
S =
\begin{cases}
\frac{\psi_{\mathrm{rt}}}{2\pi}
\mathcal{F}, & \text{if } \psi_{\mathrm{rt}} \leq \pi\\
(1 - \frac{\psi_{\mathrm{rt}}}{2\pi})
\mathcal{F}, & \text{if } \psi_{\mathrm{rt}} > \pi,
\end{cases}
where :math:`\psi_{\mathrm{rt}}` is the round-trip Gouy phase and :math:`\mathcal{F}` is the
cavity finesse.
:`getter`: Returns a :class:`numpy.ndarray` of the cavity resolution in the tangential and
sagittal planes, respectively (read-only).
"""
return np.array([self.Sx, self.Sy])
def __compute_resolution(self, direction):
gouy = self.__compute_round_trip_gouy(direction, deg=False)
f = self.finesse
s = 0.5 * f * gouy / np.pi
if gouy > np.pi:
s = f - s
return s
@property
def Sx(self):
"""The resolution of cavity in the tangential plane.
If the cavity is not stable, then ``np.nan`` is returned.
:`getter`: Returns the tangential plane resolution (read-only).
See Also
--------
Cavity.S
"""
if not self.is_stable_x:
return np.nan
return self.__compute_resolution("x")
@property
def Sy(self):
"""The resolution of cavity in the sagittal plane.
If the cavity is not stable, then ``np.nan`` is returned.
:`getter`: Returns the sagittal plane resolution (read-only).
See Also
--------
Cavity.S
"""
if not self.is_stable_y:
return np.nan
return self.__compute_resolution("y")
### Stability flags ###
@property
def is_stable(self):
r"""Flag indicating whether the cavity is stable.
This only returns `True` if *both* planes of the cavity eigenmode
are stable.
:`getter`: Returns `True` if :math:`0 \leq g \leq 1`,
`False` otherwise (for both tangential, sagittal planes).
See Also
--------
Cavity.g
"""
return self.is_stable_x and self.is_stable_y
@property
def is_stable_x(self):
r"""Flag indicating whether cavity is stable in the tangential plane.
:`getter`: Returns `True` if :math:`0 \leq g_x \leq 1`, `False` otherwise.
See Also
--------
Cavity.is_stable
Cavity.gx
"""
return 0 < self.gx < 1
@property
def is_stable_y(self):
r"""Flag indicating whether cavity is stable in the sagittal plane.
:`getter`: Returns `True` if :math:`0 \leq g_y \leq 1`, `False` otherwise.
See Also
--------
Cavity.is_stable
Cavity.gy
"""
return 0 < self.gy < 1
@property
def is_critical(self):
r"""Flag indicating whether the cavity is critically stable.
This only returns `True` if *both* planes of the cavity eigenmode
are critically stable.
:`getter`: Returns `True` if :math:`g = 0` or :math:`g = 1`,
`False` otherwise (for both tangential, sagittal planes).
See Also
--------
Cavity.g
"""
return self.is_critical_x and self.is_critical_y
@property
def is_critical_x(self):
r"""Flag indicating whether the cavity is critically stable in the tangential
plane.
:`getter`: Returns `True` if :math:`g_x = 0` or :math:`g_x = 1`,
`False` otherwise.
See Also
--------
Cavity.is_critical
Cavity.gx
"""
gx = self.gx
return gx == 0 or gx == 1
@property
def is_critical_y(self):
r"""Flag indicating whether the cavity is critically stable in the sagittal
plane.
:`getter`: Returns `True` if :math:`g_x = 0` or :math:`g_x = 1`,
`False` otherwise.
See Also
--------
Cavity.is_critical
Cavity.gy
"""
gy = self.gy
return gy == 0 or gy == 1
### Methods for setting up the symbolic equations for each property ###
def __symbolise_round_trip_optical_length(self):
self._optical_length = 0.0
for comp in self.__path.spaces:
self._optical_length += comp.L.ref * comp.nr.value
def __symbolise_FSR(self):
self._FSR = constants.C_LIGHT / self._optical_length
def __symbolise_loss(self):
from finesse.components.general import InteractionType
power = 1.0
t = self.__tree
while t.left is not None:
if t.node.is_input:
comp = t.node.component
else:
comp = t.node.space
if isinstance(comp, components.Surface):
if (
comp.interaction_type(t.node, t.left.node)
== InteractionType.REFLECTION
):
power *= comp.R.ref
else:
power *= comp.T.ref
t = t.left
# Need to do final reflection from root component
power *= self.__tree.node.component.R.ref
self._loss = 1.0 - power
def __symbolise_finesse(self):
_loss = np.sqrt(1.0 - self._loss)
# self._finesse = 0.5 * np.pi / np.arcsin(0.5 * (1.0 - _loss) / np.sqrt(_loss))
# adf 13.05.2022
# switching to approximate equation as this does not break down
# for low values of high losses. The difference to the eact
# equation is minimal, see
# https://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer
self._finesse = np.pi * np.sqrt(_loss) / (1 - _loss)
def __symbolise_FWHM(self):
self._FWHM = self._FSR / self._finesse
def __symbolise_storage_time(self):
self._tau = 1 / (np.pi * self._FWHM)
def __symbolise_pole(self):
self._pole = 0.5 * self._FWHM
def __initialise_ABCD(self):
self.__tree = TraceTree.from_cavity(self)
self._ABCDx = np.eye(2)
self._ABCDy = np.eye(2)
self.__tree.compute_rt_abcd(self._ABCDx, self._ABCDy)
def _get_workspace(self, sim):
from finesse.components.modal.cavity import CavityWorkspace
return CavityWorkspace(self, sim)
[docs] def initialise(self):
"""Initialises the symbolic equations of the cavity and calculates the cavity
path from the associated model."""
# determine the target node of the cavity path
if isinstance(self.source.component, components.Mirror):
target = self.source.opposite
else:
bs = self.source.component
if self.source.port is bs.p1:
target = bs.p2.i
elif self.source.port is bs.p2:
target = bs.p1.i
elif self.source.port is bs.p3:
target = bs.p4.i
else:
target = bs.p3.i
self.__path = self._model.path(self.source, target, self.via)
self.__initialise_ABCD()
# Set up all the symbolic equations for each property
self.__symbolise_round_trip_optical_length()
self.__symbolise_loss()
self.__symbolise_finesse()
self.__symbolise_FSR()
self.__symbolise_FWHM()
self.__symbolise_storage_time()
self.__symbolise_pole()
if self.is_fabry_perot:
comps = list(
filter(
lambda x: isinstance(x, components.Surface),
self.path.components,
)
)
M1, M2 = comps[0], comps[-1]
R1x, R1y = M1.Rcx.value, M1.Rcy.value
R2x, R2y = M2.Rcx.value, M1.Rcy.value
if sgn(R1x) == sgn(R2x) and sgn(R1y) == sgn(R2y) and not self.is_stable:
warn(
f"the signs of the radii of curvature of mirrors {repr(M1.name)} "
f"and {repr(M2.name)} in the unstable Fabry-Perot cavity "
f"{repr(self.name)} are equal"
)
[docs] def any_changing_params(self, geometric=False):
"""Determines whether any parameter of any component inside the cavity is
changing.
If the optional argument `geometric` is True, then this will only
check that the following parameters are changing:
- radii of curvature of surfaces,
- lengths of spaces,
- refractive indices of spaces,
- focal lengths of lenses,
- angles of incidence of beam splitters.
Parameters
----------
geometric : bool
If true then only checks parameters which affect ABCD matrices.
Returns
-------
flag : bool
True if any parameter is changing (subject to the condition outlined
above), False otherwise.
"""
geometric_params = ["Rcx", "Rcy", "L", "f", "nr", "alpha"]
for comp in self.path.components:
for param in comp.parameters:
if param.is_changing:
if geometric and param.name not in geometric_params:
continue
return True
return False
@property
def is_changing(self):
"""Flag indicating whether any geometric parameter inside the cavity is
changing.
A geometric parameter is defined as one of:
- radii of curvature of surfaces,
- focal lengths of lenses,
- angles of incidence of beam splitters,
- lengths of spaces,
- refractive indices of spaces,
i.e. any parameter which can affect the ABCD matrix values.
"""
return self.any_changing_params(geometric=True)
[docs] def get_exit_nodes(self):
"""Obtains a dictionary of `source: target` mappings where source -> target and
target is an exit node of the cavity.
An exit node is defined to be a node that is not internal
to the cavity, rather it is obtained on propagation from
an internal node to outside the cavity.
Returns
-------
exit_nodes : dict
A dictionary of `source: target` mappings.
"""
source_succ = nx.dfs_successors(
self._model.optical_network, self.source.full_name
)
node_from_name = lambda n: self._model.network.nodes[n]["weakref"]()
cav_nodes = self.path.nodes
exit_nodes = {}
for source_name, target_names in source_succ.items():
source = node_from_name(source_name)
if source in cav_nodes:
for target_name in target_names:
target = node_from_name(target_name)
if target not in cav_nodes:
exit_nodes[source] = target
return exit_nodes
[docs] def trace_beam(self):
"""Traces the cavity eigenmode through the cavity path.
Returns
-------
out : :class:`.BeamTraceSolution`
An object representing the results of the tracing routine.
"""
from ..solutions import BeamTraceSolution
wavelength = self.__get_lambda0()
trace = self.__tree.trace_beam(wavelength, symmetric=True)
return BeamTraceSolution(f"{self.name}_trace", trace, [self.__tree])
[docs] def generate_abcd_str(self):
"""Generates a string representation of the cavity round-trip ABCD matrix
operations.
This can be useful for debugging purposes as the returned string will
correspond exactly to the operation performed internally for calculating
the round-trip matrices.
The format of each matrix symbol will be ``<comp>__<from_port>_<to_port>``,
e.g. the reflection at the rear (port two) surface of a mirror named ITM
would be represented as ``ITM__p2_p2``. The matrix multiplication is denoted
via the ``@`` symbol.
Returns
-------
abcd_str : str
A string representing the operation to obtain the cavity round-trip
ABCD matrix (in either plane).
"""
from finesse.tracing.cytools import generate_rt_abcd_str
return generate_rt_abcd_str(self.__tree)
[docs] def plot(self, direction=None, *args, **kwargs):
"""Plots the beam representing the cavity eigenmode over the path of the cavity.
See :meth:`.PropagationSolution.plot` if specifying `direction` or
:meth:`.AstigmaticPropagationSolution.plot` otherwise.
Returns
-------
fig : Figure
Handle to the figure.
axs : axes
The axis handles.
"""
nodes = self.path.nodes
# From node is always first node of cavity path
fn = nodes[0]
traversed_ports = OrderedSet()
tn = None
for node in nodes: # traverse all the nodes
# If port has already been encountered, stop
# as we don't want to repeat the same space
# (this is applicable to linear cavs only)
if node.port in traversed_ports:
tn = node
break
traversed_ports.add(node.port)
# If we didn't traverse the same port twice (e.g. this
# is a ring or bow-tie type cavity) then set to node as
# final node of the cavity path for the round-trip
if tn is None:
tn = nodes[-1]
if direction is None:
ps = self._model.propagate_beam_astig(from_node=fn, to_node=tn)
else:
ps = self._model.propagate_beam(
from_node=fn, to_node=tn, direction=direction
)
return ps.plot(*args, **kwargs)