finesse.components.beamsplitter.Beamsplitter.ABCD

Beamsplitter.ABCD(from_node, to_node, direction='x', symbolic=False, copy=True, retboth=False, allow_reverse=False)[source]

Returns the ABCD matrix of the beam splitter for the specified coupling.

The matrices for transmission and reflection are different for the sagittal and tangential planes (MsM_s and MtM_t), as shown below.

Transmission

../../../../_images/abcd_bst.svg

For the tangential plane (direction = ‘x’),

Mt=(cosα2cosα10ΔnRccosα1cosα2),M_t = \begin{pmatrix} \frac{\cos{\alpha_2}}{\cos{\alpha_1}} & 0 \\ \frac{\Delta n}{R_c} & \frac{\cos{\alpha_1}}{\cos{\alpha_2}} \end{pmatrix},

and for the sagittal plane (direction = ‘y’),

Ms=(10ΔnRc1),M_s = \begin{pmatrix} 1 & 0 \\ \frac{\Delta n}{R_c} & 1 \end{pmatrix},

where α1\alpha_1 is the angle of incidence of the beam splitter and α2\alpha_2 is given by Snell’s law (n1sinα1=n2sinα2n_1\sin{\alpha_1} = n_2\sin{\alpha_2}). The quantity Δn\Delta n is given by,

Δn=n2cosα2n1cosα1cosα1cosα2.\Delta_n = \frac{n_2 \cos{\alpha_2} - n_1 \cos{\alpha_1}}{ \cos{\alpha_1} \cos{\alpha_2} }.

If the direction of propagation is reversed such that the radius of curvature of the beam splitter is in this direction, then the elements AA and DD of the tangential matrix (MtM_t) are swapped.

Reflection

../../../../_images/abcd_bsr.svg

The reflection at the front surface of the beam splitter is given by,

Mt=(102n1Rccosα11),M_t = \begin{pmatrix} 1 & 0 \\ -\frac{2n_1}{R_c \cos{\alpha_1}} & 1 \end{pmatrix},

for the tangential plane, and,

Ms=(102n1cosα2Rc1),M_s = \begin{pmatrix} 1 & 0 \\ -\frac{2n_1 \cos{\alpha_2}}{R_c} & 1 \end{pmatrix},

for the sagittal plane.

At the back surface RcRcR_c \rightarrow - R_c and α1α2\alpha_1 \rightarrow - \alpha_2.

See Connector.ABCD() for descriptions of parameters, return values and possible exceptions.

Raises
treTotalReflectionError

If total reflection occurs for the specified coupling - i.e. if sinα2>1.0\sin{\alpha_2} > 1.0.