Source code for finesse.utilities.homs

"""Functions for manipulating Higher Order Modes."""

import logging
import numbers

import numpy as np
import scipy.special

from ..env import warn
from ..exceptions import ContextualValueError

LOGGER = logging.getLogger(__name__)


[docs]def make_modes(select=None, maxtem=None): """Construct a 2D :class:`numpy.ndarray` of HOM indices. Parameters ---------- select : sequence, str, optional; default: None Identifier for the mode indices to generate. This can be: - An iterable of mode indices, where each element in the iterable must unpack to two integer convertible values. - A string identifying the type of modes to include, must be one of "even", "odd", "tangential" (or "x") or "sagittal" (or "y"). maxtem : int, optional; default: None Optional maximum mode order, applicable only for when `select` is a string. This is ignored if `select` is not a string. Returns ------- modes : :class:`numpy.ndarray` An array of mode indices. Raises ------ ValueError If either of the arguments `select`, `maxtem` are invalid or non-unique. See Also -------- insert_modes : Add modes to an existing mode indices array at the correct positions. Examples -------- Modes up to a maximum order of 2: >>> make_modes(maxtem=2) array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [2, 0]], dtype=int32) Even modes up to order 4: >>> make_modes("even", maxtem=4) array([[0, 0], [0, 2], [0, 4], [2, 0], [2, 2], [4, 0]], dtype=int32) Sagittal modes up to order 3: >>> make_modes("y", maxtem=3) array([[0, 0], [0, 1], [0, 2], [0, 3]], dtype=int32) Modes from a list of strings: >>> make_modes(["00", "11", "22"]) array([[0, 0], [1, 1], [2, 2]], dtype=int32) """ if select is None and maxtem is None: raise ContextualValueError( { "select": ContextualValueError.empty, "maxtem": ContextualValueError.empty, }, "cannot both be empty", ) if select is None: _check_maxtem(maxtem) limit = 1 + int(maxtem) N = int(limit * (1 + limit) / 2) modes = np.zeros(N, dtype=(np.intc, 2)) count = 0 for i in range(0, limit): for j in range(0, i + 1): modes[count] = (i - j, j) count += 1 elif isinstance(select, str): switch = { "even": _make_even_modes, "odd": _make_odd_modes, "tangential": _make_tangential_modes, "sagittal": _make_sagittal_modes, "x": _make_tangential_modes, "y": _make_sagittal_modes, } if select.casefold() not in switch: msg = f""" Mode arument (= {select}) not recognised as a valid identifier. It must be: - "even" for generating even modes up to the given maxtem, - "odd" for generating odd modes up to the given maxtem, - "tangential" or "x" for generating tangential modes up to maxtem, - or "sagittal" or "y" for generating sagittal modes up to maxtem. """ raise ValueError(msg.strip()) modes = switch[select.casefold()](maxtem) else: if maxtem is not None: warn( "Ignoring maxtem argument given to make_modes as an iterable has " "already been provided." ) modes = np.zeros(len(select), dtype=(np.intc, 2)) for i, mode in enumerate(select): try: mode = list(mode) except TypeError: raise ValueError("Expected mode list to be a two-dimensional list") if len(mode) != 2: msg = ( f"Expected element {mode} of mode list to be an iterable of " f"length 2 but instead got an iterable of size {len(mode)}." ) raise ValueError(msg) try: n, m = mode n = int(n) m = int(m) if n < 0 or m < 0: raise ValueError() modes[i] = (n, m) except (TypeError, ValueError): msg = ( f"Expected n (= {n}) and m (= {m}) of element {mode} " f"of mode list to be convertible to non-negative integers." ) raise TypeError(msg) (_, counts) = np.unique(modes, axis=0, return_counts=True) if np.any(counts > 1): raise ValueError(f"Mode array has non-unique values: {modes}") return modes
def _make_even_modes(maxtem): all_modes = make_modes(maxtem=maxtem) return np.array([(n, m) for n, m in all_modes if not n % 2 and not m % 2]) def _make_odd_modes(maxtem): all_modes = make_modes(maxtem=maxtem) return np.array( [(n, m) for n, m in all_modes if (n % 2 or not n) and (m % 2 or not m)] ) def _make_tangential_modes(maxtem): _check_maxtem(maxtem) N = 1 + maxtem modes = np.zeros(N, dtype=(np.intc, 2)) for n in range(N): modes[n] = (n, 0) return modes def _make_sagittal_modes(maxtem): _check_maxtem(maxtem) N = 1 + maxtem modes = np.zeros(N, dtype=(np.intc, 2)) for m in range(N): modes[m] = (0, m) return modes
[docs]def insert_modes(modes, new_modes): """Inserts the mode indices in `new_modes` into the `modes` array at the correct (sorted) position(s). Parameters ---------- modes : :class:`numpy.ndarray` An array of HOM indices. new_modes : sequence, str A single mode index pair or an iterable of mode indices. Each element must unpack to two integer convertible values. Returns ------- out : :class:`numpy.ndarray` A sorted array of HOM indices consisting of the original contents of `modes` with the mode indices from `new_modes` included. Raises ------ ValueError If `new_modes` is not a mode index pair or iterable of mode indices. See Also -------- make_modes Examples -------- Make an array of even modes and insert new modes into this: >>> modes = make_modes("even", 2) >>> modes array([[0, 0], [0, 2], [2, 0]], dtype=int32) >>> insert_modes(modes, ["11", "32"]) array([[0, 0], [0, 2], [1, 1], [2, 0], [3, 2]], dtype=int32) """ if not hasattr(new_modes, "__getitem__"): raise ValueError( "Argument 'new_modes' must be a single mode index pair " "or an iterable of mode index pairs." ) if not hasattr(new_modes[0], "__getitem__") or isinstance(new_modes, str): new_modes = [new_modes] new = np.array([(int(n), int(m)) for n, m in new_modes], dtype=np.intc) return np.unique(np.vstack((modes, new)), axis=0)
[docs]def remove_modes(modes, remove): if not hasattr(remove, "__getitem__"): raise ValueError( "Argument remove must be a single mode index pair " "or an iterable of mode index pairs." ) if not hasattr(remove[0], "__getitem__") or isinstance(remove, str): remove = [remove] for n, m in remove: ni = int(n) mi = int(m) index = np.where(np.bitwise_and(modes[:, 0] == ni, modes[:, 1] == mi)) modes = np.delete(modes, index, axis=0) return modes
[docs]def surface_diopt_to_roc(roc, d): """Convert a dioptre shift, at a surface, to a radius of curvature. Parameters ---------- roc : float The initial radius of curvature of the surface. d : float, array-like A value or array of values representing the dioptre shift. Returns ------- out : float, array-like The new values of the radius of curvature. """ return 2 / (d + 2 / roc)
[docs]def lens_diopt_to_f(f, d): """Convert a dioptre shift, at a lens, to a focal length. Parameters ---------- f : float The initial focal length of the lens. d : float, array-like A value or array of values representing the dioptre shift. Returns ------- out : float, array-like The new value(s) of the focal length. """ return 1 / (d + 1 / f)
def _check_maxtem(maxtem): if ( not isinstance(maxtem, numbers.Number) or maxtem < 0 or ( hasattr(maxtem, "is_integer") and not maxtem.is_integer() and not isinstance(maxtem, numbers.Integral) ) ): raise ValueError("Argument maxtem must be a non-negative integer.")
[docs]def jacobi_real_x(n, a, b, x): r"""Jacobi Polynomial P_n^{a,b}(x) for real x. n / n+a \ / n+b \ / x-1 \^(s) / x+1 \^(n-s) P_n^{a,b}(x)= Sum | | | | | --- | | --- | s=0 \ n-s / \ s / \ 2 / \ 2 / Parameters ---------- n, a, b : int Polynomial coefficients x : float Polynomial argument Notes ----- Implementation of Jacobi fucntion using binominal coefficients. This can handle values of alpha, beta < -1 which the special.eval_jacobi function does not. """ P = 0.0 for s in np.arange(0, n + 1): P += ( scipy.special.binom(n + a, n - s) * scipy.special.binom(n + b, s) * ((x - 1.0) / 2) ** (s) * ((x + 1.0) / 2) ** (n - s) ) return P
[docs]def HG_to_LG(n, m): """Returns the coefficients and mode indices of the Laguerre-Gaussian modes required to create a particular Hermote-Gaussian mode. Parameters ---------- n, m: integer Indices of the HG mode to re-create. Returns ------- coeffcients: array_like Complex coefficients for each order=n+m LG mode required to re-create HG_n,m. ps, ls: array_like LG mode indices corresponding to coefficients. """ factorial = scipy.special.factorial # Mode order N = n + m # Create empty vectors for LG coefficients/ indices coefficients = np.linspace(0, 0, N + 1, dtype=np.complex128) ps = np.linspace(0, 0, N + 1) ls = np.linspace(0, 0, N + 1) # Calculate coefficients for j in np.arange(0, N + 1): # Indices for coefficients l = 2 * j - N p = int((N - np.abs(l)) / 2) ps[j] = p ls[j] = l signl = np.sign(l) if l == 0: signl = 1.0 # Coefficient c = (signl * 1j) ** m * np.sqrt( factorial(N - m) * factorial(m) / (2**N * factorial(np.abs(l) + p) * factorial(p)) ) c = ( c * (-1.0) ** p * (-2.0) ** m * jacobi_real_x(m, np.abs(l) + p - m, p - m, 0.0) ) coefficients[j] = c return tuple(zip(coefficients, np.array(tuple(zip(ps, ls)))))
[docs]def make_modes_LG(maxtem): """Returns an array of LG modes ordered in increasing polynomial order, 2p+|l|. Parameters ---------- maxtem : int Maximum LG order to include, maxtem > 0. Returns ------- pl : array_like array of (p,l) indicies """ modes = [] orders = [] for p in np.arange(maxtem + 1): for l in np.arange(-maxtem, maxtem + 1): order = 2 * p + abs(l) if order <= maxtem: modes.append((p, l)) orders.append(order) return np.array(modes)[np.argsort(orders)]
[docs]def HG_to_LG_matrix(hgs, lgs): """Returns a matrix that will convert a Hermite-Gaussian mode vector into Laguerre- Gaussian modes. The HG and LG modes provided to this function must contain all the required modes. A 2nd order HG mode will require 2nd order LG modes. Parameters ---------- hgs : array_like Array of (n,m) indicies lgs : array_like Array of (p,l) indicies Returns ------- K : matrix Matrix to multiply with a HG mode vector to get the equivalent LG modes. """ hg_idx = {(n, m): i for i, (n, m) in enumerate(hgs)} lg_idx = {(p, l): i for i, (p, l) in enumerate(lgs)} K = np.zeros((hgs.shape[0], lgs.shape[0]), dtype=complex) for nm in hgs: fpl = HG_to_LG(*nm) h = hg_idx[nm[0], nm[1]] for factor, pl in fpl: l = lg_idx[pl[0], pl[1]] K[l, h] = factor return K