Bibliography

[1]

A Freise, G Heinzel, H Lück, R Schilling, B Willke, and K Danzmann. Frequency-domain interferometer simulation with higher-order spatial modes. Classical and Quantum Gravity, 21(5):S1067–S1074, 2004. Finesse is available at http://www.gwoptics.org/finesse. URL: http://stacks.iop.org/0264-9381/21/S1067.

[2]

D. D. Brown. Interaction of light and mirrors: Advanced techniques for modelling future gravitational wave detectors. PhD thesis, University of Birmingham, 2015. URL: http://etheses.bham.ac.uk/6500/9/BrownD16PhD_Final.pdf.

[3]

J Aasi et al. (LSC). Advanced ligo. Classical and Quantum Gravity, 32(7):074001, 2015. URL: http://stacks.iop.org/0264-9381/32/i=7/a=074001.

[4]

F. Acernese and others. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Grav., 32(2):024001, 2015. URL: http://stacks.iop.org/0264-9381/32/i=2/a=024001.

[5]

T Akutsu et al. (KAGRA). First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 36(16):165008, jul 2019. URL: https://doi.org/10.1088%2F1361-6382%2Fab28a9, doi:10.1088/1361-6382/ab28a9.

[6]

M Punturo and others. The einstein telescope: a third-generation gravitational wave observatory. Class. Quantum Grav., 27(19):194002, 2010. URL: http://stacks.iop.org/0264-9381/27/i=19/a=194002.

[7]

Daniel Brown and Andreas Freise. Pykat: python interface and tools for finesse 2. http://www.gwoptics.org/pykat/. URL: http://www.gwoptics.org/pykat/.

[8]

Daniel D. Brown, Philip Jones, Samuel Rowlinson, Sean Leavey, Anna C. Green, Daniel Töyrä, and Andreas Freise. Pykat: python package for modelling precision optical interferometers. SoftwareX, 12:100613, 2020. URL: http://www.sciencedirect.com/science/article/pii/S2352711020303265, doi:https://doi.org/10.1016/j.softx.2020.100613.

[9]

B. P. et al. (LSC Abbott and Virgo). Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016. URL: http://link.aps.org/doi/10.1103/PhysRevLett.116.061102, doi:10.1103/PhysRevLett.116.061102.

[10]

missing institution in finesse2_manual

[11]

R.∼W.∼P. Drever, J.∼L. Hall, F.∼V. Kowalski, J Hough, G.∼M. Ford, A.∼J. Munley, and H Ward. Laser phase and frequency stabilization using an optical resonator. Applied Physics B: Lasers and Optics, 31:97–105, jun 1983. doi:10.1007/BF00702605.

[12]

C. Bond, D. Brown, A. Freise, and K. Strain. Interferometer Techniques for Gravitational-Wave Detection. Living Reviews in Relativity, 2016. doi:10.1007/s41114-016-0002-8.

[13]

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer. Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity. In U. O. Farrukh and S. Basu, editors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 2989 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, 57–68. May 1997.

[14]

Mauricio D.Ortiz jr, Aaron W. Jones, Marie-Sophie Hartig, Ali L. James, and Luis Ortega. Investigation into cavity axis shifts and tilts using the finesse modal model. Technical Report, LIGO Scientific Collaboration, 2021. URL: https://dcc.ligo.org/LIGO-T1900708/public.

[15]

A.E. Siegman. Lasers. University Science Books, 1986. ISBN 9780935702118. URL: https://books.google.co.uk/books?id=1BZVwUZLTkAC.

[16]

Dana Z Anderson. Alignment of resonant optical cavities. Appl. Opt., 23(17):2944–2949, sep 1984. URL: http://ao.osa.org/abstract.cfm?URI=ao-23-17-2944, doi:10.1364/AO.23.002944.

[17]

H Wang. Beware of Warped Surfaces: Near-Unstable Cavities for Future Gravitational Wave Detectors. PhD thesis, University of Birmingham, 2017.

[18]

Carlton M. Caves. Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett., 45:75–79, Jul 1980. URL: https://link.aps.org/doi/10.1103/PhysRevLett.45.75, doi:10.1103/PhysRevLett.45.75.

[19]

John A. Sidles and Daniel Sigg. Optical torques in suspended fabry–perot interferometers. Physics Letters A, 354(3):167–172, 2006. URL: https://www.sciencedirect.com/science/article/pii/S0375960106001381, doi:https://doi.org/10.1016/j.physleta.2006.01.051.

[20]

Eiichi Hirose, Keita Kawabe, Daniel Sigg, Rana Adhikari, and Peter R. Saulson. Angular instability due to radiation pressure in the ligo gravitational-wave detector. Appl. Opt., 49(18):3474–3484, Jun 2010. URL: https://opg.optica.org/ao/abstract.cfm?URI=ao-49-18-3474, doi:10.1364/AO.49.003474.

[21]

L. McCuller, C. Whittle, D. Ganapathy, K. Komori, M. Tse, A. Fernandez-Galiana, L. Barsotti, P. Fritschel, M. MacInnis, F. Matichard, K. Mason, N. Mavalvala, R. Mittleman, Haocun Yu, M. E. Zucker, and M. Evans. Frequency-dependent squeezing for advanced ligo. Phys. Rev. Lett., 124:171102, Apr 2020. URL: https://link.aps.org/doi/10.1103/PhysRevLett.124.171102, doi:10.1103/PhysRevLett.124.171102.

[22]

Joel S Cohen. Computer algebra and symbolic computation: Mathematical methods. AK Peters/CRC Press, 2003.

[23]

Samuel Rowlinson, Artemiy Dmitriev, Aaron W. Jones, Teng Zhang, and Andreas Freise. Feasibility study of beam-expanding telescopes in the interferometer arms for the einstein telescope. Phys. Rev. D, 103:023004, Jan 2021. URL: https://link.aps.org/doi/10.1103/PhysRevD.103.023004, doi:10.1103/PhysRevD.103.023004.

[24]

G. Heinzel. Advanced optical techniques for laser-interferometric gravitational-wave detectors. PhD thesis, Munich, Max Planck Inst. Quantenopt., 1999.

[25]

Jun Mizuno. Comparison of optical configurations for laser-interferometric gravitational-wave detectors. PhD thesis, Hannover U., 1995.

[26]

Bayer-Helms F. Coupling coefficients of an incident wave and the modes of spherical optical resonator in the case of mismatching and misalignment. Appl. Opt., 23:1369–1380, 1984. doi:10.1364/AO.23.001369.

[27]

Andreas Freise Charlotte Bond, Paul Fulda. Analytical calculation of hermite-gauss and laguerre-gauss modes on a bullseye photodiode. Technical Report, LIGO Scientific Collaboration, 2016. URL: https://arxiv.org/abs/1606.01057.

[28]

D. D. Brown. Interactions of light and mirrors: Advanced techniques for modelling future gravitational wave detectors. PhD thesis, University of Birmingham, 2015.

[29]

Jean-Yves Vinet. On special optical modes and thermal issues in advanced gravitational wave interferometric detectors. Living Reviews in Relativity, 12(1):5, 2009. URL: https://doi.org/10.12942/lrr-2009-5, doi:10.12942/lrr-2009-5.

[30]

Joshua Ramette, Marie Kasprzack, Aidan Brooks, Carl Blair, Haoyu Wang, and Matthew Heintze. Analytical model for ring heater thermal compensation in the advanced laser interferometer gravitational-wave observatory. Appl. Opt., 55(10):2619–2625, Apr 2016. URL: http://ao.osa.org/abstract.cfm?URI=ao-55-10-2619, doi:10.1364/AO.55.002619.

[31]

Antonio Perreca, Aidan F. Brooks, Jonathan W. Richardson, Daniel Töyrä, and Rory Smith. Analysis and visualization of the output mode-matching requirements for squeezing in advanced ligo and future gravitational wave detectors. Phys. Rev. D, 101:102005, May 2020. URL: https://link.aps.org/doi/10.1103/PhysRevD.101.102005, doi:10.1103/PhysRevD.101.102005.

[32]

Eleanor King, Yuri Levin, David Ottaway, and Peter Veitch. Modeling thermoelastic distortion of optics using elastodynamic reciprocity. Phys. Rev. D, 92:022005, Jul 2015. URL: https://link.aps.org/doi/10.1103/PhysRevD.92.022005, doi:10.1103/PhysRevD.92.022005.

[33]

P Hello and J -Y Vinet. Simulation of beam propagation in off-axis optical systems. Journal of Optics, 27(6):265–276, nov 1996. URL: https://doi.org/10.1088/0150-536x/27/6/005, doi:10.1088/0150-536x/27/6/005.

[34]

A. Freise, G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, H. Lück, B. Willke, R. Schilling, A. Rüdiger, W. Winkler, and K. Danzmann. Demonstration of detuned dual recycling at the Garching 30 m laser interferometer. Physics Letters A, 277:135–142, November 2000. arXiv:arXiv:gr-qc/0006026.

[35]

H. Lück, C. Affeldt, J. Degallaix, A. Freise, H. Grote, M. Hewitson, S. Hild, J. Leong, M. Prijatelj, K. A. Strain, B. Willke, H. Wittel, and K. Danzmann. The upgrade of geo 600. Journal of Physics Conference Series, 228(1):012012, May 2010. arXiv:1004.0339, doi:10.1088/1742-6596/228/1/012012.

[36]

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G.P. Newton, N.A. Robertson, H. Ward, A.M. Campbell, J.E. Logan, D.I. Robertson, K.A. Strain, J.R.J. Bennett, V. Kose, M. Kühne, B.F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkleff, A. Tünnermann, and B. Willke. GEO 600 – Proposal for a 600m laser-interferometric gravitational wave antenna. Volume 190 of MPQ. MPQ Garching, 1994.

[37]

H. Lück, A. Freise, S. Goßler, S. Hild, K. Kawabe, and K. Danzmann. Thermal correction of the radii of curvature of mirrors for geo. In Classical Quantum Gravravity 21, 985–989. 2003.

[38]

H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lück, K. A. Strain, J. Hough, and K. Danzmann. Dual recycling for geo. In Classical Quantum Gravravity 21, 473–480. 2003.

[39]

A. Freise. The Next Generation of Interferometry: Multi-Frequency Optical Modelling, Control Concepts and Implementation. PhD thesis, Universität Hannover, 2003. URL: https://www.repo.uni-hannover.de/handle/123456789/6218, doi:https://doi.org/10.15488/6166.