"""Base level Actions utilities and classes."""
# Allow generics in type hints (PEP 585). This can be removed once Finesse requires at
# least Python 3.9.
from __future__ import annotations
import abc
import logging
import time
from collections import defaultdict
import finesse
from finesse.tree import TreeNode
from finesse.solutions import BaseSolution
from finesse.utilities.components import names_to_nodes
LOGGER = logging.getLogger(__name__)
[docs]def convert_str_to_parameter(model, attr):
"""Converts names `component.parameter` or `component` to a parameter object. Will
return default parameter when component name is given.
Parameters
----------
model : Model
Model object to look for parameter in
attr : [str | Parameter]
String value for the name of an element or a parameters full name. If
a Parameter is given its full name will be used to grab the equivalent
parameter in this Model.
Returns
-------
parameter
The equivalent Parameter object for the attr provided
"""
if hasattr(attr, "full_name"):
return model.get(attr.full_name)
else:
obj = model.get(attr)
# If this attr string has no period in it, assume it is an element name
# and try and get it
if "." in attr:
return obj
else:
if isinstance(obj, finesse.parameter.Parameter):
return obj
if obj.default_parameter_name is None:
raise ValueError(
f"{repr(obj)} does not have a default parameter, please specify one to use"
)
return getattr(obj, obj.default_parameter_name)
[docs]def request_dict_reduction(A, B):
dd = defaultdict(list)
for d in (A, B):
for key, value in d.items():
dd[key].extend(value)
return dd
[docs]class AnalysisState(TreeNode):
[docs] def __init__(self, model, name="AnalysisState", parent=None):
super().__init__(f"{name} {model}", parent=parent)
assert isinstance(model, finesse.model.Model)
self.__model = model
self.__sim = None
self.__previous_solution = None
self.model_finished_with = True
self.__action_workspaces = {}
@property
def model(self):
return self.__model
@property
def action_workspaces(self):
"""Actions can use their id, `id(self)`, to generate a key to store simulation
specific data and reuse it each time run is called."""
return self.__action_workspaces
@property
def sim(self):
return self.__sim
@property
def previous_solution(self):
return self.__previous_solution
[docs] def apply(self, action):
start = time.time_ns()
sol = action._do(self)
if sol is not None:
if not isinstance(sol, BaseSolution):
raise TypeError(
f"Action of type {type(action)} should return a BaseSolution derivative, not {sol}"
)
sol.time = (time.time_ns() - start) / 1e9
self.__previous_solution = sol
return sol
def _split(self):
state = AnalysisState(self.model.deepcopy(), parent=self)
return state
[docs] def build_model(self, changing_params, keep_nodes):
if not self.model_finished_with:
raise Exception(
"Trying to build new model whilst current one is in use. Make sure to call `finished()` on this state if the simulation has been completed."
)
if self.model.is_built:
self.finished()
LOGGER.info(
f"Building simulation for model {repr(self.model)}"
f"Changing parameters = {changing_params}"
)
# If we do not have a simulation we need to build one
for p in changing_params:
p.is_tunable = True
self.keep_nodes = tuple(names_to_nodes(self.model, keep_nodes))
# Tell node it is being used as some sort of output so it doesn't get removed
# TODO ddb : could refactor the naming for more generic use instead of detector
for obj in self.keep_nodes:
obj.used_in_detector_output.append(self)
self.__changing_params = changing_params
self.__sim = self.model._build()
self.__sim.__enter__()
self.model_finished_with = False
[docs] def finished(self):
if self.__sim:
LOGGER.info(
f"Finishing simulation {repr(self.sim)} for model {repr(self.model)}"
)
self.model_finished_with = True
self.__sim.__exit__(None, None, None)
self.model.unbuild()
for p in self.__changing_params:
p.is_tunable = False
for obj in self.keep_nodes:
obj.used_in_detector_output.remove(self)
self.__sim = None
def __copy__(self):
raise Exception("Cannot copy state objects")
def __deepcopy__(self):
raise Exception("Cannot copy state objects")
[docs]class Action(metaclass=abc.ABCMeta):
[docs] def __init__(self, name, analysis_state_manager=False):
self.__name = name
self.__analysis_state_manager = analysis_state_manager
@property
def name(self):
return self.__name
@property
def analysis_state_manager(self):
return self.__analysis_state_manager
def _run(self, model, return_state=False, progress_bar=False):
"""Runs this Action on some input model and returns a solution.
Parameters
----------
model : Model
Model to run this action on
return_state : boolean
If True the AnalysisState object is returned along with the solution
progress_bar : bool, optional
Whether to show progress bars or not
Returns
-------
solution : BaseSolution
Solution object generated by this action
state : AnalysisState, when return_state = True
The final state object after pasing through the action. This can be used
to extract the models generated and tuned at later actions.
"""
from .series import Series # stop circular import
before = finesse.config.show_progress_bars
finesse.config.show_progress_bars = progress_bar
state = AnalysisState(model)
try:
if not self.analysis_state_manager:
action = Series(self)
else:
action = self
result = state.apply(action)
if type(result) is tuple:
sol = BaseSolution("root")
for _ in result:
if _ is not None:
sol.add(_)
else:
sol = result
if type(sol) is BaseSolution and len(sol.children) == 1:
sol = sol[0]
finally:
state.finished()
finesse.config.show_progress_bars = before
if return_state:
return sol, state
else:
return sol
@abc.abstractmethod
def _requests(self, model, memo, first=True):
"""Updates the memo dictionary with details about what this action needs from a
simulation to run. Parent actions will get requests from all its child actions
so that it can build a model that suits all of them, to minimise the amount of
building.
This method can do initial checks to make sure the model has the
required features to perform the action too.
memo['changing_parameters'] - append to this list the full name string
of parameters that this action needs
memo['keep_nodes'] - append to this list the full name string
of nodes that this action needs to keep.
This should be used where actions are
accessing node outputs without using a
detector element (which registers that
nodes should be kept already).
Parameters
----------
model : Model
The Model that the action will be operating on
memo : defaultdict(list)
A dictionary that should be filled with requests
first : boolean
True if this is the first request being made
"""
raise NotImplementedError()
[docs] def get_requests(self, model):
memo = defaultdict(list)
self._requests(model, memo)
return memo
@abc.abstractmethod
def _do(self, state: AnalysisState) -> BaseSolution:
pass
[docs] def plan(self, previous=None):
"""Returns an expected plan for the actions that will be run in a tree form.
This may not be exactly what is ran.
Returns
-------
plan : TreeNode
"""
if previous is None:
previous = TreeNode("start")
me = TreeNode(f"{self.name} - {self.__class__.__name__}")
me.empty = not self.analysis_state_manager
previous.add(me)
found_actions = []
for key, value in self.__dict__.items():
if isinstance(value, Action):
found_actions.append(value)
elif isinstance(value, (tuple, list, set)):
for _ in value:
if isinstance(_, Action):
found_actions.append(_)
for action in found_actions:
action.plan(me)
return previous