Source code for finesse.analysis.actions.sensing

"""Collection of Actions that deal with sensing tasks such as computing sensing
matrices, optimising RF readouts, etc."""

from .base import Action
from .lti import FrequencyResponse
from ...solutions import BaseSolution
from ...simulations import CarrierSignalMatrixSimulation
from ...parameter import deref
from ...utilities.tables import NumberTable
from . import elements_to_name

import numpy as np
import logging

LOGGER = logging.getLogger(__name__)


[docs]class OptimiseRFReadoutPhaseDCSolution(BaseSolution): pass
[docs]class OptimiseRFReadoutPhaseDC(Action): """This optimises the demodulation phase of ReadoutRF elements relative to some DegreeOfFreedom. This optimises the phases so that the ReadoutRF in-phase signal will optimally sense the provided DegreeOfFreedom. The phases are optimised by calculating the DC response of the readouts. This Action changes the state of the model. Parameters ---------- args Pairs of DegreesOfFreedom and ReadoutRF elements, or pairs of their names. d_dof : float, optional The small offset applied to the DOFs to compute the gradients of the error signals. Examples -------- Here we optimise REFL9 I and AS45 I to sense CARM and DARM optimially: >>> sol = OptimiseRFReadoutPhaseDC("CARM", "REFL9", "DARM", "AS45").run(aligo) """ def __init__(self, *args, d_dof=1e-9, name="optimise_demod_phases_dc"): super().__init__(name) self.args = args self.dofs = elements_to_name(args[::2]) self.readouts = elements_to_name(args[1::2]) self.d_dof = d_dof if len(self.dofs) != len(self.readouts): raise ValueError( "Pairs of Degrees of freedoms and readouts must be provided" ) def _do(self, state): Idws = tuple( next( filter( lambda x: x.oinfo.name == rd + "_I", state.sim.readout_workspaces ), None, ) for rd in self.readouts ) Qdws = tuple( next( filter( lambda x: x.oinfo.name == rd + "_Q", state.sim.readout_workspaces ), None, ) for rd in self.readouts ) dcs = tuple(state.model.get(f"{dof}.DC") for dof in self.dofs) N = len(self.dofs) sol = OptimiseRFReadoutPhaseDCSolution(self.name) sol.Ivals = np.zeros((N, 2), dtype=complex) sol.Qvals = np.zeros((N, 2), dtype=complex) # Here we compute the gradient of the error signals # with respect to some DOF change for i in range(N): dcs[i].value -= self.d_dof state.sim.run_carrier() sol.Ivals[i, 0] = Idws[i].get_output() sol.Qvals[i, 0] = Qdws[i].get_output() dcs[i].value += 2 * self.d_dof state.sim.run_carrier() sol.Ivals[i, 1] = Idws[i].get_output() sol.Qvals[i, 1] = Qdws[i].get_output() # reset value dcs[i].value -= self.d_dof # Compute the gradients in both I and Q sol.Igradients = (sol.Ivals[:, 1] - sol.Ivals[:, 0]) / 2e-6 sol.Qgradients = (sol.Qvals[:, 1] - sol.Qvals[:, 0]) / 2e-6 # We can use the complex angle to compute how much to change the # demod phase by to optimise it sol.add_degrees = np.angle(sol.Igradients + 1j * sol.Qgradients, deg=True) sol.phases = {} for i in range(N): param = state.model.get(f"{self.readouts[i]}.phase") param.value += sol.add_degrees[i] sol.phases[self.readouts[i]] = float(param.value) return sol def _requests(self, model, memo, first=True): memo["changing_parameters"].extend((f"{_}.DC" for _ in self.dofs)) memo["changing_parameters"].extend((f"{_}.phase" for _ in self.readouts)) return memo
[docs]class SensingMatrixSolution(BaseSolution): """Sensing matrix solution. The raw sensing matrix information can be accessed using the `SensingMatrixSolution.out` member. This is a complex-valued array with dimensions (DOFs, Readouts), which are accessible via `SensingMatrixSolution.dofs` and `SensingMatrixSolution.readouts`. A table can be printed using :meth:`.SensingMatrixSolution.display`. Polar plot can be generated using :meth:`.SensingMatrixSolution.plot` Printing :class:`.SensingMatrixSolution` will show an ASCII table of the data. """
[docs] def display( self, dofs=None, readouts=None, tablefmt="pandas", numfmt="{:.2G}", highlight=None, highlight_color="#808080", ): """Displays a HTML table of the sensing matrix, optionally highlighting the largest absolute value for each readout or dof. Notes ----- Only works when called from an IPython environment with the `display` method available. Pandas is required for highlighting. Parameters ---------- dofs : iterable[str], optional Names of degrees of freedom to show, defaults to all if None readouts : iterable[str], optional Names of readouts to show, defaults to all if None tablefmt : str, optional Either 'pandas' for pandas formatting, or anything else to use `finesse.utilities.Table`. Defaults to 'pandas' if available. numfmt : str or func or array, optional Either a function to format numbers or a formatting string. The function must return a string. Can also be an array with one option per row, column or cell. Defaults to '{:.2G}'. highlight : str or None, optional Either 'dof' to highlight the readout that gives the largest output for each dof, or 'readout' to highlight the dof for which each readout gives the largest output. Defaults to None (no highlighting). highlight_color : str, optional Color to highlight the maximum values with. Pandas is required for this to have an effect. Defaults to pale orange. """ from IPython.display import display B, dofs, readouts = self.matrix_data(dofs, readouts) if tablefmt == "pandas": try: import pandas as pd except ModuleNotFoundError: tablefmt = "html" if tablefmt == "pandas": def highlight_max(data): return np.where( abs(data) == abs(data).max(), f"background-color: {highlight_color}", "", ) B = pd.DataFrame(B, index=dofs, columns=readouts) if highlight == "dof": style = B.style.apply(highlight_max, axis=1) elif highlight == "readout": style = B.style.apply(highlight_max, axis=0) elif highlight is None: style = B.style else: raise ValueError( "Argument 'highlight' must be one of 'dof', 'readout' or None." ) display(style.format(numfmt)) else: return NumberTable( B, colnames=readouts, rownames=dofs, numfmt=numfmt, )
def __str__(self): B, dofs, readouts = self.matrix_data() return str(NumberTable(B, colnames=readouts, rownames=dofs, numfmt="{:.2G}"))
[docs] def matrix_data(self, dofs=None, readouts=None): """Generates a sensing matrix table. Parameters ---------- dofs : iterable[str], optional Names of degrees of freedom to show, defaults to all if None readouts : iterable[str], optional Names of readouts to show, defaults to all if None Returns ------- matrix : 2D numpy array, complex dofs : list of :class:`str` readouts: list of :class:`str` """ dofs = dofs or self.dofs if readouts is not None: readouts = readouts readouts_rf = [rd for rd in self.readouts_rf if rd in readouts] readouts_dc = [rd for rd in self.readouts_dc if rd in readouts] try: readout_indices = [self.readouts.index(rd) for rd in readouts] A = self.out[:, readout_indices] except Exception: print( "ValueError: Some readouts provided " "are not present in the sensing matrix." ) raise else: readouts = self.readouts readouts_rf = self.readouts_rf readouts_dc = self.readouts_dc A = self.out hdrs = [] for rd in readouts: if rd in readouts_rf: hdrs.append(rd + "_I") hdrs.append(rd + "_Q") else: hdrs.append(rd + "_DC") Nd = len(dofs) Nr_rf = len(readouts_rf) Nr_dc = len(readouts_dc) B = np.zeros((Nd, ((2 * Nr_rf) + Nr_dc))) col_num = 0 for ind, rd in enumerate(readouts): if rd in readouts_rf: B[:, col_num] = A[:, ind].real B[:, col_num + 1] = A[:, ind].imag col_num += 2 else: B[:, col_num] = A[:, ind].real col_num += 1 return B, dofs, hdrs
[docs] def plot( self, Nrows, Ncols, figsize=(6, 5), *, dofs=None, readouts=None, r_lims=None ): import matplotlib.pyplot as plt dofs = np.atleast_1d(dofs or self.dofs) readouts = np.atleast_1d(readouts or self.readouts) fig, axs = plt.subplots( Nrows, Ncols, figsize=figsize, subplot_kw={"projection": "polar"}, squeeze=False, ) axs = axs.flatten() for idx in range(len(readouts)): dof_idxs = tuple(self.dofs.index(_) for _ in dofs) _ax = axs[idx] A = self.out[dof_idxs, idx] _ax.set_theta_zero_location("E") if r_lims is None or (r_lims is not None and r_lims[idx] is None): r_lim = (np.log10(np.abs(A)).min() - 1, np.log10(np.abs(A)).max()) else: r_lim = np.log10(r_lims[idx]) _ax.set_ylim(r_lim[0], r_lim[1] + 1) _ax.set_yticklabels([]) theta = np.angle(A) r = np.log10(np.abs(A)) _ax.plot( (theta, theta), (r_lim[0] * np.ones_like(r), r), marker="D", markersize=5, ) _ax.set_title(self.readouts[idx]) _ax.set_ylim(r_lim[0], r_lim[1] + 1) _ax.legend(self.dofs, loc="best", bbox_to_anchor=(0.5, -0.3), fontsize=8) plt.tight_layout(pad=1.2) return fig, axs
[docs]class SensingMatrixDC(Action): """Computes the sensing matrix elements for various degrees of freedom and readouts that should be present in the model. The solution object for this action then contains all the information on the sensing matrix. This can be plotted in polar coordinates, displayed in a table, or directly accessed. The sensing gain is computed by calculating the gradient of each readout signal, which means it is a DC measurement. This will not include any suspension or radiation pressure effects. This action does not modify the states model. Parameters ---------- dofs : iterable[str] String names of degrees of freedom readouts : iterable[str] String names of readouts d_dof : float, optional Small step used to compute derivative """ def __init__(self, dofs, readouts, d_dof=1e-9, name="sensing_matrix_dc"): super().__init__(name) # only store string names self.dofs = elements_to_name(dofs) self.readouts = elements_to_name(readouts) self.d_dof = d_dof def _do(self, state): self.readouts_rf = [] self.readouts_dc = [] Idws = tuple( next( filter( lambda x: x.oinfo.name == rd + "_I", state.sim.readout_workspaces ), None, ) for rd in self.readouts ) Qdws = tuple( next( filter( lambda x: x.oinfo.name == rd + "_Q", state.sim.readout_workspaces ), None, ) for rd in self.readouts ) DCws = tuple( next( filter( lambda x: x.oinfo.name == rd + "_DC", state.sim.readout_workspaces ), None, ) for rd in self.readouts ) dcs = tuple(state.model.get(f"{dof}.DC") for dof in self.dofs) Nd = len(self.dofs) Nr = len(self.readouts) sol = SensingMatrixSolution(self.name) sol.dofs = self.dofs sol.readouts = self.readouts sol.readouts_rf = [] sol.readouts_dc = [] sol.vals = np.zeros((Nd, Nr, 2), dtype=complex) sol.out = np.zeros((Nd, Nr), dtype=complex) # Here we compute the gradient of the error signals # with respect to some DOF change for i in range(Nd): dcs[i].value -= self.d_dof state.sim.run_carrier() for j in range(Nr): if Idws[j] is not None: sol.vals[i, j, 0] += Idws[j].get_output() sol.vals[i, j, 0] += 1j * Qdws[j].get_output() if i == 0: sol.readouts_rf.append(self.readouts[j]) else: sol.vals[i, j, 0] += DCws[j].get_output() if i == 0: sol.readouts_dc.append(self.readouts[j]) dcs[i].value += 2 * self.d_dof state.sim.run_carrier() for j in range(Nr): if Idws[j] is not None: sol.vals[i, j, 1] += Idws[j].get_output() sol.vals[i, j, 1] += 1j * Qdws[j].get_output() else: sol.vals[i, j, 1] += DCws[j].get_output() # reset value dcs[i].value -= self.d_dof # Compute the gradients sol.out = (sol.vals[:, :, 1] - sol.vals[:, :, 0]) / (2 * self.d_dof) return sol def _requests(self, model, memo, first=True): memo["changing_parameters"].extend((f"{_}.DC" for _ in self.dofs)) return memo
[docs]class SensingMatrixAC(Action): """Computes the sensing matrix elements for various degrees of freedom and readouts that should be present in the model. The solution object for this action then contains all the information on the sensing matrix. This can be plotted in polar coordinates, displayed in a table, or directly accessed. The sensing gain is computed by calculating the gradient of each readout signal, which means it is a DC measurement. This will not include any suspension or radiation pressure effects. This action does not modify the states model. Parameters ---------- dofs : iterable[str] String names of degrees of freedom readouts : iterable[str] String names of readouts f : float Frequency to measure sensing matrix at """ def __init__(self, dofs, readouts, f=1e-3, name="sensing_matrix_ac"): super().__init__(name) # only store string names self.dofs = elements_to_name(dofs) self.readouts = elements_to_name(readouts) self.f = f self.nodes = [] self.nodes.extend([readout + ".I" for readout in self.readouts]) self.nodes.extend([readout + ".Q" for readout in self.readouts]) def _do(self, state): sol = SensingMatrixSolution(self.name) sol.dofs = self.dofs sol.readouts = self.readouts sol.freqresp = FrequencyResponse((self.f,), self.dofs, self.nodes)._do(state) sol.out = np.zeros((len(self.dofs), len(self.readouts)), dtype=np.complex128) for i, dof in enumerate(self.dofs): for j, readout in enumerate(self.readouts): sol.out[i, j] = np.real(sol.freqresp[dof, readout + ".I"]) sol.out[i, j] += 1j * np.real(sol.freqresp[dof, readout + ".Q"]) return sol def _requests(self, model, memo, first=True): memo["changing_parameters"].append("fsig.f") memo["keep_nodes"].extend((dof, ("input",)) for dof in self.dofs) memo["keep_nodes"].extend((node, ("output",)) for node in self.nodes) return memo
[docs]class CheckLinearitySolution(BaseSolution): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.results = None self.lock_names = ()
[docs]class CheckLinearity(Action): """An action that shows the relationships between all DOFs and all error signals, to check whether they are related linearly. Plotted for DOFs starting at their initial values and up until their initial values + 2*gain*intial error signal. Parameters ---------- *locks : list, optional A list of locks to use in each RunLocks step. Acts like *locks parameter in RunLocks: if not provided, all locks in model are used. num_points : int Number of points to plot in the DOF range. plot_results : boolean Whether or not to plot results (requires matplotlib) xlim : list or None Defines (half of) the range of DOF values over which to plot the error signals. If not specified, gains are used to find a useful range of DOF values to plot over. name : str Name of the action. """ def __init__( self, *locks, num_points=10, plot_results=True, xlim=None, name="run locks" ): super().__init__(name) self.locks = elements_to_name(locks) # Round up to the nearest odd integer, so that the plot always # includes the current points. self.num_points = num_points + 1 if num_points % 2 == 0 else num_points self.xlim = xlim self.plot_results = plot_results def _do(self, state): if state.sim is None: raise Exception("Simulation has not been built") if not isinstance(state.sim, CarrierSignalMatrixSimulation): raise NotImplementedError() if len(self.locks) == 0: locks = tuple(lck for lck in state.model.locks if not lck.disabled) else: locks = tuple( state.model.elements[name] for name in self.locks if not state.model.elements[name].disabled ) if self.xlim is not None: if len(self.xlim) != len(locks): raise Exception("Number of locks and xlim not equal.") # else: # xlim = self.xlim # Not used out_wss = set( # workspaces can be in both lists (*state.sim.readout_workspaces, *state.sim.detector_workspaces) ) dws = tuple( next( filter( lambda x: x.oinfo.name == lock.error_signal.name, out_wss, ), None, ) for lock in locks ) sol = CheckLinearitySolution(self.name) N = len(locks) # Store initial parameters in case of failure so we can reset the model initial_parameters = tuple(float(lock.feedback) for lock in locks) initial_errors = tuple( float(dw.get_output() - locks[dws.index(dw)].offset) for dw in dws ) sol.results = np.zeros((N, N, 2, self.num_points)) sol.lock_names = tuple(lock.name for lock in locks) err_sigs = [lck.error_signal for lck in locks] err_sig_names = [sig.name for sig in err_sigs] readout_names = [sig.readout.name for sig in err_sigs] lock_dof_names = [deref(lck.feedback).component.name for lck in locks] sensing_matrix = state.apply(SensingMatrixDC(lock_dof_names, readout_names)) gain_matrix = np.zeros((N, N)) for dof_idx, dof in enumerate(lock_dof_names): for rd_idx, rd in enumerate(readout_names): err_sig = err_sig_names[rd_idx] val = sensing_matrix.out[dof_idx, rd_idx] if "_Q" in err_sig: gain = val.imag else: gain = val.real gain_matrix[rd_idx, dof_idx] = gain # Index i runs over error signals for i in range(N): # Index j runs over DOFs initial_error = initial_errors[i] for j in range(N): initial_param = initial_parameters[j] if self.xlim is not None: dof_list = np.linspace( initial_param - self.xlim[j], initial_param + self.xlim[j], self.num_points, ) elif gain_matrix[i, j] == 0: dof_list = np.linspace( initial_param - 1, initial_param + 1, self.num_points ) else: lock_gain = -1 / gain_matrix[i, j] dof_list = np.linspace( initial_param - 0 * lock_gain * initial_error, initial_param + 2 * lock_gain * initial_error, self.num_points, ) rel_dof_list = dof_list - initial_param sol.results[i, j, 0] = rel_dof_list for idx, dof_val in enumerate(dof_list): deref(locks[j].feedback).value = dof_val state.sim.run_carrier() new_error = dws[i].get_output() - locks[i].offset sol.results[i, j, 1, idx] = new_error deref(locks[j].feedback).value = initial_param if self.plot_results: import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [1.5 * N, 1.5 * N] if N > 1: fig, axs = plt.subplots(N, N) for i in range(N): for j in range(N): axs[i][j].plot( sol.results[i, j, 0, 0:], sol.results[i, j, 1, 0:], zorder=0 ) axs[i][j].ticklabel_format( axis="y", style="sci", scilimits=(0, 0) ) for ax, name in zip(axs[-1], lock_dof_names): ax.set_xlabel(name, labelpad=10, fontsize=14) for ax, name in zip(axs[:, 0], err_sig_names): ax.set_ylabel(name, labelpad=10, fontsize=14) plt.tight_layout() plt.subplots_adjust(wspace=0.6, hspace=0.6) elif N == 1: plt.plot(sol.results[0, 0, 0, 0:], sol.results[0, 0, 1, 0:]) plt.xlabel(lock_dof_names[0], fontsize=14) plt.ylabel(err_sig_names[0], fontsize=14) else: print("No existing locks to display.") plt.show() return sol def _requests(self, model, memo, first=True): if len(self.locks) == 0: # If none given lock everything for lock in model.locks: memo["changing_parameters"].append(deref(lock.feedback).full_name) rd_name = lock.error_signal.name if "_DC" not in rd_name: memo["changing_parameters"].append( lock.error_signal.readout.name + ".phase" ) else: for name in self.locks: if name not in model.elements: raise Exception(f"Model {model} does not have a lock called {name}") memo["changing_parameters"].append( model.elements[name].feedback.parameter.full_name ) rd_name = model.elements[name].error_signal.name if "_DC" not in rd_name: memo["changing_parameters"].append( model.elements[name].error_signal.readout.name + ".phase" )
[docs]class GetErrorSignalsSolution(BaseSolution): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.results = None self.lock_names = ()
[docs]class GetErrorSignals(Action): """An action that quickly calculates the current error signals for all or a subset of locks in a model. Parameters ---------- *locks : list, optional A list of lock names to compute the error signals for. If not provided, all locks in model are used. name : str Name of the action. """ def __init__(self, *locks, name="get error signals"): super().__init__(name) self.locks = elements_to_name(locks) def _do(self, state): if state.sim is None: raise Exception("Simulation has not been built") if not isinstance(state.sim, CarrierSignalMatrixSimulation): raise NotImplementedError() if len(self.locks) == 0: locks = state.model.locks else: locks = tuple(state.model.elements[name] for name in self.locks) out_wss = set( # workspaces can be in both lists so combine them (*state.sim.readout_workspaces, *state.sim.detector_workspaces) ) dws = tuple( next( filter( lambda x: x.oinfo.name == lock.error_signal.name, out_wss, ), None, ) for lock in locks ) state.sim.run_carrier() N = len(locks) sol = GetErrorSignalsSolution(self.name) sol.results = np.zeros(N) sol.lock_names = tuple(lock.name for lock in locks) for i in range(N): res = dws[i].get_output() - locks[i].offset sol.results[i] = res return sol def _requests(self, model, memo, first=True): pass